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Abstract

The development of an accurate model of uncertainties for the control of structures

that undergo a change in operational environment, based solely on modeling and ex-

perimentation in the original environment is studied. The application used through-

out this work is the development of an on-orbit uncertainty model based on ground

modeling and experimentation. A ground based uncertainty model consisting of mean

errors and bounds on critical structural parameters is developed. The uncertainty

model is created using multiple data sets to observe all relevant uncertainties in the

system. The Discrete Extended Kalman Filter is used as an identification/parameter

estimation method for each data set, in addition to providing a covariance matrix

which aids in the development of the uncertainty model. Once ground based modal

uncertainties have been developed, they are localized to specific degrees of freedom

in the form of mass and stiffness uncertainties. Two techniques are presented: a ma-

trix method which develops the mass and stiffness uncertainties in a mathematical

manner; and a sensitivity method which assumes a form for the mass and stiffness

uncertainties in macroelements and scaling factors. This form allows the derivation

of mass and stiffness uncertainties in a more physical manner. The mass and stiffness

uncertainties of the ground based system are then mapped onto the on-orbit system,

and projected to create an analogous on-orbit uncertainty model in the form of mean

errors and bounds on critical parameters. The Middeck Active Control Experiment

is introduced as experimental verification for the localization and projection methods

developed. In addition, closed loop results from on-orbit operations of the experiment

verify the use of the uncertainty model for control analysis and synthesis in space.
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Chapter 1

Introduction

1.1 Motivation

Practical control design for space structures typically requires a very accurate model

of the dynamics, in addition to a robust control design procedure. Two common

approaches exist for developing a model for designing on-orbit controllers: 1) a model

of the structure is made prior to flight, and controllers are designed based upon this

model, 2) an on-orbit identification is performed and controllers are designed based

upon this measurement model. In this era of higher performing, low cost experiments,

option (1) uses test heritage to increase performance and avoid catastrophic failure,

while avoiding the costly on-orbit (re)design of the control system.

To develop the most accurate model possible for control design on a space structure

prior to flight, extensive ground modeling and testing must be performed. Figure 1.1

shows this process schematically. A 1-g finite element model is developed using

physical parameters and updated using open loop data to obtain good accuracy. Ad-

ditional dynamics for sensors, actuators, time delays, etc. are appended to the finite

element model to create an input-output model. Multiple identification experiments

are performed, and the data is fit with even higher accuracy measurement models.

By comparing the measurement models and input-output model, a 1-g uncertainty

model consisting of mean errors and bounds on critical parameters is developed. A

shifted input-output model can be created by shifting the parameters of the input-
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output model by the meanerrors. Robust controllerscan bedesignedon the shifted

model, and evaluatedusing the parameterbounds from the 1-g uncertainty model.

A model of the on-orbit dynamics is createdby removing the gravity effectsand

suspensiondegreesof freedomfrom the 1-g finite elementmodel, and appending the

appropriate additional dynamics. This is termed the 0-g input-output model. A 0-g

uncertainty model is developedby projecting the mean errors and bounds from the

1-g uncertainty model into 0-g. This projection, which is oneof the central ideasof

this work, is accomplishedusing all of the information available,i.e. the 1-g and 0-g

finite elementmodels, and the 1-g uncertainty model. A 0-g shifted input-output

model can then be created in an analogousmanner to the 1-g shifted input-output

model. Robust control design in 0-g can then be performedusing the shifted input-

output model, and evaluated using the predicted bounds on critical parametersof

the system. In addition to developingaccuratemodelsof the on-orbit dynamicsfor

control designprior to flight (shifted input-output and uncertainty model), modeling

and control confidencehavebeendevelopedfrom the ground basedtest heritage.

The updated finite elementmodel and multiple identifications data sets in 1-g

shownat the top of Figure 1.1 are assumedto be completeat the beginning of this

work. The 0-g finite elementmodel is also available,given the removal of gravity

and suspensiondegreesof freedomfrom the 1-g finite elementmodel. The bottom of

Figure 1.1 is the focusof the work in this thesis. The specificissueaddressedin this

work is, "Can accuratestructural dynamicmodelsand uncertainty modelsbecreated

for control analysisand synthesisof structures in space,basedsolelyon modelingand

experimentationon the ground?"

The specificobjectivesof this thesisare asfollows:

• Develop a 1-g uncertainty model basedon a finite elementmodel and setsof
openloop identification data.

• Developanalytical techniquesusingthe 1-g and 0-g finite elementmodelsand
the 1-g uncertainty model, to accuratelypredict the 0-g uncertainty model.

• Examine how the shifted model and uncertainty modelcan be usedfor control
synthesisand analysis.

• Demonstratethesetechniquesexperimentally.

14
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Figure 1.1: Development of control design and uncertainty models for 0-g.

1.2 Previous Work

Figure 1.1 shows that developing a good control design model and uncertainty model

for 0-g is a complex blending of many disciplines. These include finite element model-

ing and updating, system identification, probability analysis, and finite element error

localization (for the uncertainty projection problem). Finite element modeling and

updating are assumed to bc complete, and are therefore not examined here. A sum-

mary of system identification techniques is given, although this is not intended to

be an exhaustive listing, only a summary. The areas which are considered the main

focus of this work, finite element error localization and stochastic analysis of models

and hardware, are thoroughly examined.

System identification techniques, the term applied to predicting models from open

loop data, have evolved from both the structural dynamics [1] and control systems [2]
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fields. While there are many algorithms which obtain very accuratefits to the data,

many techniquescreate difficulties in using them for model updating and error lo-

calization. Thesedifficulties include estimating the frequency,damping, and mode

shapeinformation from a modelwith repeatedmodes;estimating normal modesfrom

measuredcomplex modes;and the inherent coupling betweenthe structural system

and additional dynamicssuchas time delays,sensordynamics,and closedloop servo

system. Therearea fewmethods,however,which parameterizethe systemin a man-

nersuchthat modal identification is mucheasier.This includeseasyparameterization

of additional dynamicsfor the actuators andsensors,time delays,etc. A few methods

havebeendeveloped,usingboth frequencydomain [3-5] and time domain [6] data to

overcometheseproblems.

Finite elementmodelerror localization techniqueshavebecomean areaof intense

researchover the past 10 years. These techniquesattempt to localize errors in the

finite elementmodel to specific degreesof freedomusing measuredfrequenciesand

mode shapesfrom modal analysis,and an initial finite elementmodel. A numberof

papersgiveexcellentsurveysof work in this area[7-9]. Therearea fewmethodswhich

localizethe errors to specificdegreesof freedom,but do not give an indication of how

to update the system [10-12]. The most notable of these is the Coordinate Modal

AssuranceCriterion (COMAC) [10],wherethe errorsare localizedby examiningthe

differencesin the theoretical and experimentalmodeshapesat the measureddegrees

of freedom. The most complete solutions, however, localize and correct othe model

errors: Thes e methods canbe divided into four groups: Matr!x Methods, Sens!tivity

Methods, Frequency Domain Methods, Dynamic Reaction Methods.

Matrix Methods work directly with the mass and stiffness matrices in localizing

the errors [13-15]. Sidhu and Ewins [16] developed the most well known of these

called the Error Matrix Method. A system is first reduced to the measured degrees

of freedom using techniques such as Guyan reduction [17]. Errors in the flexibility

matrix are identified, and then inverted to get the measured stiffness errors. Although

this is one of the more practical methods because it attempts to keep the physical

nature of the system, Gysin [18] showed that it is extremely dependent upon tile
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choiceof reduction technique.

Sensitivity Methods make use of the first order sensitivities of the modal parame-

ters, i.e. the Jacobian. The mass and stiffness matrices are expressed as a function of

design parameters (E, I, p, etc.) The first order sensitivities of the system can then

be considered. Although many variations of this method have been presented [19-22],

most depend on measurement of the mode shape at all degrees of freedom (or the

experimental mode shape is expanded to the full mode shape.) The most well known

variant is due to Lallement et al. [23-26]. In these papers, the problems with the

method are addressed such as sensitivity problems, the choice of design parameters,

the matching of mode shapes, and the use of partial information. Although not used

by many of the researchers in this area, the most appealing aspect of this variant is

that partial measurement of the mode shapes can still be used, without expansion.

Frequency Domain Methods utilize the frequency response functions, instead of

the modal parameters in generating error matrices. These methods build an error

matrix in the frequency domain that is not in the form of a correction to the mass

or stiffness matrices. Many of the techniques are transformations of already known

methods into the frequency domain. Gordis [27] and He [28] both give frequency

domain interpretations of the Error Matrix Method.

Dynamic Reaction Methods localize the finite element model errors by examining

the residues of the eigensystem using the experimental mode shapes and frequencies.

Large residues indicate errors at the degrees of freedom. The experimental mode

shapes are assumed to be known, either by measurement or expansion. Fissette et

al. developed the Force Balance Method [29], where a vector of spatially localized

unbalanced forces is used to find the degrees of freedom in error. By assuming a form

for the model errors, the correction matrices are found.

Many of the finite element model error localization methods presented require

either measurement of all degrees of freedom, reduction/condensation of the original

system, or expansion of the experimental mode shapes to the size of the original

system. In practical applications for space structures, measurement of all degrees of

freedom is not possible. As stated previously, reduction/condensation of the original
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systemleadsto errorsand error locationswhich aresuspect[18]. Expansionof mode

shapesto the original sizeof the systemhasbeenexplored by many researchers,but

as with the reduction methods, there is no general correlation between the actual

mode shapeand the accuracyof the expandedmode shape[30]. The only method

which is capableof handling partial information, i.e. a subsetof the frequenciesand

measurementof a subsetof the degreesof freedom,is the Sensitivity Method.

Finite element error localization techniques are usually used for updating the

physical parameters of the system, assumingthat they have deterministic errors.

Multiple identification data sets,however,give more information than deterministic

errors. The errors are actually stochastic in nature. The meancan be thought of as

the modelingerror, and canbeusedin the updating and localization techniquesgiven

previously. The variancecan be thought of as the repeatability of the experiment,

and can be usedto developan uncertainty model for robust control design.

There is little researchin the areaof repeatability of experiments,especially for

the specificuseof control design. Collins et al. [31] assume statistical properties for

the design parameters, in order to iteratively localize the uncertainties. This is very

similar to the Sensitivity Method, except the variances of the design parameters are

chosen to reflect the user's confidence in the original estimate. Also, in an interesting

series of papers, Hasselman et al. [32-34] group together generically similar structures

into three databases, an example of which is Research Models of Large (truss-type)

Space Structures. The database can then be used to create a probability model of a

space structure, where a mean model can be formed, with a distribution of errors of

the modal parameters. Although quite conservative for specific designs, applicability

of this database to the initial design phase of space structures is very high.

One of the most thorough examinations of the repeatability of ground and space

hardware is the Middeck 0-g Dynamics Experiment (MODE) [35,36]. On the ground

and in space, the variation in modal parameters, specifically frequency and damping,

were examined as functions of disturbance force amplitude, joint preload, reassembly,

shipset (different hardware), and suspension change. Joint preloads in the MODE

experiment introduced weak nonlinearities, while the inclusion of a rotary joint intro-
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ducedmoderatenonlinearities, especiallyin the torsion mode. Comparingthe modal

parametersof two setsof hardwaredesignedfrom the samedesignplans, the overall

trendswerethe same(i.e. pole-zeropatterns), however,thereweresmall uncertainties

in frequencyfrom 0-5%. As the frequenciesof the suspensionsystemwere increased,

the test article frequenciesincreasedand damping decreased,especially in the lower

modes.The repeatability of the hardware wasalsotested by using reassembly.The

varianceduring the tests wasapproximately 1% in frequencyand 1/2% in damping,

although this was quite larger for the configuration that included the moderately

nonlinear rotary joint.

The work in this thesisbuilds upon the current error localization literature by in-

troducing an additional matrix method and refining the sensitivity method described

previously [31,23,26]. Both methodsutilize only measureduncertainties,and do not

reducethe systemor expand the measuredmode shapes.The two methods are also

extendedto include varianceuncertainty localization for the developmentof bounds

in an uncertainty model. It will therefore be refered to as uncertainty localization

throughout this work. In addition, asa result of theextremely largeamount of MACE

on-orbit data, a completeexaminationof the repeatability of a structure in both 1-g

and 0-g environmentsis also given.

1.3 Thesis Outline

Chapter 2 gives a preliminary discussion of the models and hardware used through-

out this thesis. The Middeck Active Control Experiment (MACE), a shuttle flight

experiment that flew on STS-67 in March 1995, is introduced as the motivation and

experimental validation of the work in this thesis. A detailed description of both the

1-g and 0-g finite element models is given. Next, a thorough assessment of model-

ing uncertainties is presented, primarily focusing on uncertainties between thc finite

element model and hardware.

Chapter 3 details the development of tile l-g, termed Nominal, uncertainty model.

First, a testing summary is presented to capture uncertainties between the model
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and hardware. Next, an identification technique is introduced called the Discrete

Extended Kalman Filter (DEKF). This techniquesatisfiesallows the easyparame-

terization of the finite elementmodel and additional dynamics neededin an identi-

fication/parameter estimation method to accurately identify the modal parameters,

as well as giving additional information in the form of an error covariancematrix.

The developmentof an uncertainty model basedon setsof measurementmodelsand

identified parametersfrom the DEKF is given, which is in the form of mean errors

and bounds on critical parametersof the system. Finally, the developmentof the

1-g uncertainty model for MACE is shownboth to verify that the DEKF and uncer-

tainty model canbedevelopedfor a practical system,and to support the work in the

following chapters.

Chapter 4 developsthe methods that take the 1-g and 0-g finite elementmod-

els, and the 1-g uncertainty model, and predicts the 0-g uncertainty model. The

idea proposedis to localize both the mean error and varianceuncertainties in the

eigenvaluesand eigenvectorsto specific degreesof freedom, thus forming massand

stiffnessuncertainties. Oncelocalized, a mapping betweenthe 1-g and 0-g systems

can be made. Therefore the massand stiffnessuncertainties of the 0-g systemcan

be developed. The 0-g uncertainty model can then be predicted by projecting the

massand stiffnessuncertaintiesinto 0-g to get meanerror and varianceuncertainties

in the 0-g eigenvaluesand eigenvectors.The mean error and varianceuncertainties

can then be usedto form the 0-g uncertainty model, in the form of meanerrors and

boundson critical parametersof the system.

Experimental verification of the uncertainty localization and projection methods

is given in Chapter 5. Becauseof the uniquenessof the MACE experiment, there

are multiple data sets of two configurationsof the test article in both 1-g and 0-g.

Therefore, two examplesaregiven to validate thesetechniquesusing MACE data.

Chapter 6 givesa summary of the usefulnessof an uncertainty model for control

design. This applies for a general uncertainty model and control designmodel, not

just the 1-g and 0-g casesexaminedin this thesis. An overviewof controller synthesis

and analysismethodswhich benefit from the useof an accurateuncertainty model
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is given. In addition, four casesof how to utilize the mean errors and bounds on

critical parametersof the system are presented,eachof which are different in their

conservatism. Finally, two 0-g closedloop controllers from the MACE experiment

are presented.One utilizes the uncertainty model in the most conservativemanner,

while the other utilizes the uncertainty model in the least conservativemanner.

1.4 Contributions

The significant contributions of this work are given here in order to understand where

they fit with the work presented• In the end, a list of the significant contributions

will again be given.

In Chapter 2, the detailed summary of uncertainties between a finite element

model and hardware is a contribution. Although parts of this summary have been

detailed in other works, this is the most detailed of its kind.

In Chapter 3, the testing process for capturing the finite element model uncer-

tainties in the data is a contribution. This is especially true because it is one of

the first set of tests that recognize that hardware is actually stochastic, rather than

deterministic. Therefore, one of the more significant contributions of this work is

the development of an uncertainty model, which consists of bounds, as well as mean

errors, on critical parameters of the system.

Chapter 4 contains the most significant contributions of this work. There are

many techniques which have been developed for localization of errors in finite element

models. The matrix technique is unique in its development, but is quite limited in its

application because it is not physically based. The sensitivity method has been used

previously to localize errors in finite element model. This work, however, presents

a more structured method than presented previously. In addition, the recognition

and localization of both mean error and variance uncertainties is quite unique in its

application. Finally, most of the error localization methods work only to iinprove the

finite element model. This work is the first to utilize the methods both for projection

into another environment (0-g), and for control design.
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Chapter 5 is unique in its experimental validation of the methods presented. It is

one of the more thorough examinations of the modeling and testing of structures in

1 g and 0-g, primarily because of the success of the MACE experiment.

And finally Chapter 6 presents four unique cases of how to utilize both the mean

errors and bounds of the uncertainty model for control design using methods devel-

oped previously. In addition, experimental validation of the usefulness of the un-

certainty model is presented in the form of 0-g controllers implemented on MACE

during STS-67.
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Chapter 2

Discussion of Models and

Hardware

In order to obtain better clarity throughout this work, a preliminary discussion of

the hardware and finite element models, along with associated uncertainties is given

first. The Middeck Active Control Experiment (MACE) is introduced as experimental

verification for the techniques presented to assure their practicality. A complete de-

scription of the modeling process is given to summarize the modeling work on MACE

and to motivate the work in this thesis. The hardware and finite element model are

presented in their entirety in order to gain full insight into the uncertainty localization

and projection techniques for a practical system. Finally, a thorough assessment of

finite element model uncertainties is presented which aids in the development of the

uncertainty localization techniques and gives insight into which uncertainties can be

easily localized. In addition, by thoroughly examining modeling uncertainties, a set

of experimental tests can be developed which aid in the observation of each of tile

different types of uncertainties.
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2.1 Middeck Active Control Experiment (MACE)

The Middeck Active Control Experiment (MACE), shown in its 1-g configuration in

Figure 2.1, is a shuttle middeck experiment that flew on the Space Shuttle Endeavour

in March 1995 (STS-67). MACE was designed to investigate the various modeling

and control design issues associated with the change in operational environment of

a flexible spacecraft from 1-g to 0-g [37]. The primary objective of the MACE

program is develop a well verified set of design techniques that allow designers to

have confidence in the eventual orbital performance of future spacecraft that cannot be

dynamically tested on the ground in a sufficiently realistic 0-g simulation. In order to

achieve this objective, a complex mesh of analytical modeling, ground testing, and on-

orbit redesign was implemented which aided in the development of tools to confidently

and accurately predict open loop and closed loop behavior without the benefit of

0-g data (i.e. prior to launch). MACE builds upon the concepts of the Middeck

0-Gravity Dynamics Experiment (MODE), which explored the characterization of

fluid dynamics, space station structure, and crew motion dynamics in 0-g on STS-40,

STS-48, and STS-62 [35, 38].

The specific program objectives were as follows:

. Assess impact of gravity perturbations and associated uncertainties on the ef-

fectiveness and predictability of multivariablc robust control.

• Develop a set of Controlled Structures Technology (CST) procedures for model

development, controller synthesis and closed loop evaluation.

• Demonstrate robust control of structural flexibility in the micro-gravity envi-

ronment.

• Augment preprogrammed control with on-orbit system identification and con-

trol redesign.

• Evaluate modeling and control on a test article representative of a particular
mission architecture.

• Develop a reusable dynamics and control laboratory for the shuttle middcck.
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Figure 2.1: MACE Flight Model Test Article

2.1.1 Modeling Process

The primary motivation for the work in this thesis came from challenges developed

during the MACE program. In order to motivate and clearly understand this work,

a detailed description of the modeling process for MACE is given. Note that this is

a specific example of the general process defined in Chapter 1.

In order to satisfy the specific program objectives listed above, the MACE pro-

gram adopted a complex blend of analytical modeling, ground testing, and on-orbit

redesign procedures. Figure 2.2 shows how the MACE program has been designed to

]nvestigate each of these techniques.

A 1-g analytical finite element model (FEM) is developed, and updated using

modal identification (step A) [39] and measured models (step C) [40]. The perfor-

mance of controllers derived from the FEM is used to identify inadequacies in the

model providing information for further model updating (step B) [41]. The perfor-

mance of controllers derived from measurement models is used to determine when
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Figure 2.2: Modeling and Control approach for MACE

FEM refinement is complete (step D). The 1-g finite element model is essentially

updated when the closed loop performance for both measurement and finite element

based controllers are equivalent (steps B and D in Figure 2.2) [42].

In order to develop controllers prior to flight, the FEM must be used to predict

the 0-g dynamics because it is the only model that is physically based. The gravity

and suspension parameters are removed from the updated 1-g FEM to provide a

0-g model (step E). The 0-g FEM is then to be used for design of flight controllers

(step F). In addition, an on-orbit system identification is performed to provide a

0-g measurement based model, which is then be used to design further controllers

(step G). Finally, FEM and measurement based controllers are compared to judge the

cost/benefit of on-orbit redesign of controllers (step H). Summaries of the on-orbit

modeling and control results are given in Refs. 43-45.

The stability and performance of the controllers designed for the ground-based

tests were typically analyzed using open-loop data. As discussed in Ref. 46, this

reduces the control design iteration time because it accurately captures the discrep-

ancies between the model and the test article. However, prior to flight, no data exists

for analyzing the controllers designed in Step F of Figure 2.2. Thus a new approach
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had to be developedthat extendsthe insights gainedfrom the ground testsand pro-

vides a quantitative measureof the possibleerrors in the 0-g control designmodel

that canbeusedto analyzethe compensatorsdesignedprior to flight. This approach

is the developmentof the 0-g uncertainty model.

A few of the insights found during the developmentof the 0-g uncertainty model

aregiven here. First, extraction of all modal parameters,specifically the frequencies,

damping ratios, and mode shapes,is quite difficult to do if using a generalmeasure-

ment model. Prior to and during the flight, a technique called Frequencydomain

Observability RangeSpaceExtraction (FORSE) [40] wasused to create an initial

measurementmodel, and aNonlinearLogarithmic LeastSquaresMethod (NLLS) [47]

wasused to obtain an evenbetter fit to the data. While these techniquescreateda

very accuratefit to the data, estimating the frequencyand mode shapeinformation

from this modelbecamedifficult becauseof repeatedmodes,estimating normal modes

from measuredcomplexmodes,and the inherent coupling betweenthe structural sys-

tem and additional dynamicssuch as time delays,sensordynamics, and the closed

loop servosystem. It wasfor thesereasonsthat only 1-g frequencyuncertaintieswere

usedin developingthe 0-g uncertainty model for flight. A completesummary of the

uncertainty model usedfor flight is given in Ref. 48.

It becameclear, however,that for the projection techniqueto be accurate,more

than the 25 frequencyuncertainties were needed. Measuredmode shapesfrom all

of the sensorswould provide an additional 400 piecesof information which could be

usedin the procedure,thus making it far moreaccurate. The work in this thesisis a

morecompleteanalysisof the developmentof 0-g uncertainty modelgiven in Ref. 48.

It drawsupon the experiencesand data from both groundand spacebasedtesting of

MACE.

Another pieceof modeling insight developedduring the MACE programwas that

of the best measurementmodel for control design.During the flight, the finite element

model basedcontrollers essentiallyperformed better than the redesignedcontrollers

basedon the moreaccuratemeasurementmodel [44]. The sourceof this nonintuitive

result may lie within the structure itself. When three identifications wereperformed
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at different disturbanceamplitude levels,the damping in a few modeswasstrikingly

different, implying a strong amplitude dependentnonlinearity. The measurement

model reproduced the data so accurately that the nonlinearity may have been fit

also, suchthat it detrimentally affectedthe closedloop controllers. For moredetailed

explanation of the on-orbit results, refer to Refs. 43-45

A summary of the primary modeling insights developedduring the MACE pro-

gram include:

Developmentof a 0-g finite element model accurate enough for robust con-
trol designcan be accomplishedusingground basedmodelingand testing, and
removaland gravity and suspensioneffects.

Predictable closedloop results for controllers designedprior to flight requires
both an accurate 0-g finite element model and an accurate 0-g uncertainty
model.

• Prediction of an accurate 0-g uncertainty model requiresmeasurementof fre-
quencyand well asmode shapeinformation.

• Extraction of modal parameters from measurementmodels is quite difficult
when measurementmodelsare not physically based.

• The best measurementmodel for control designis both accurateand physically
based.

2.1.2 Hardware Description

The MACE Flight Model (FM) test article, illustrated in Figure 2.1 consists of 4

straight polyCarbonate tubes assembled into a bus, each separated by aluminum col-

lars. One strut is actually square hollow, with piezoelectrics mounted on each side

to provide bending strain. Two two-axis pointing/scanning payloads are attached at

each end, each with gimbals actuating about the X and Z axes via DC torque motors.

One is primarily used as a disturbance source (secondary payload), while the other

creates the pointing performance metric (primary payload). A reaction wheel assem-

bly at the center node, comprised of three orthogonally mounted DC servo motors

with an inertia wheel mounted on each, is used to provide attitude torques in three

axes.
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The MACE FM also comprises a variety of sensors for identification and closed

loop control. Each gimbal contains laser rotary encoders measuring the relative an-

gular rate of each axis (4 total). A two-axis rate gyro platform measuring the inertial

rate about the X and Z axes is attached inside of the primary payload to provide

a measure of the pointing performance metric. Three single axis rate gyros are also

mounted on the side of the reaction wheel cans, providing collocated inertial rate

measurements in three axes. Each reaction wheel also has a tachometer measuring

the relative speed of each wheel. Each strut is also instrumented with two strain

gauge pairs at its midpoint to provide a measure of the bending strains about the Y

and Z axes.

The Engineering Support Module (ESM) (not shown) houses many of the addi-

tional pieces of equipment which support the test article. These include: the digital

control computer, two channel signal generation, memory storage, disk drive, power

conditioning for the actuators, and signal conditioning for the sensors. The real time

control computer operates at a 500 Hz sampling rate, and can handle compensators

of up to 80 states. The ESM is attached to the MACE FM test article through a

power and data umbilical. In l-g, the test article is supported by a three point active

pneumatic/electric low frequency suspension system. Also not shown is a Ku-Band

Interface System (KIS) which provided 40 Megabyte uplink and downlink capability

between Mission Control and the Space Shuttle during STS-67. A detailed description

of the MACE hardware is given in Refs. 49, 37

2.1.3 STS-67

The MACE experiment flew on the middeck of the United States Space Shuttle En-

deavour during the STS-67 mission on March 2-18, 1995. The primary payload of the

mission was Astro-2, the second dedicated Spacelab mission to conduct astronomical

observations in the ultraviolet spectral regions. The Commander and Pilot of STS-67,

Stephen S. Oswald and William G. Gregory, were in charge of on-orbit operations for

MACE. MACE was originally scheduled for 3 days of on-orbit operations with the
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following timetable:

Day 1: -Identification of test article and downlink of data
-Implementation of 0-g controllersdesignedprior to flight
-Creation of 0-g measurementmodel (on ground)

Day 2: -Implementation of pre-programmedcontrollersdesignedprior to flight
-Redesignof 0-g controllers basedon measurementmodel (on ground)

Day 3: -Uplink of redesigned0-g controllers
-Implementation of redesigned0-g controllers

As a result of STS-67being extended to a 16 day mission and the unwavering

support of the crew, the MACE team receivedmuchmore than the originally planned

schedule.MACE operations during the mission included: 14days of testing in three

different configurations; over 550 protocols (algorithms), both pre-programmedand

redesigned,wereimplemented for systemidentification, CST control, and command

input shaping; there were 13downlinks of data totaling over 500 Megabytes,and 4

uplinks of redesignedprotocols; 5.4 Gigabytes of data was collected; and audio and

video downlink of the crew's observations were used to facilitate redesign.

A breakdown of the CST control protocols that were implemented on-orbit is

given in Table 2.1, where FEM refers to finite element based controllers, and MM

refers to measurement model based controllers. Notice that more than 50% of the

controllers implemented on-orbit were designed prior to flight using the finite element

model and projected uncertainties (i.e. using no flight data). This shows the weighted

importance for the MACE program of the developing accurate control design and

uncertainty models for accurately predicting closed loop results prior to flight.

Type

Pre-programmed

Redesign

Redesign

Model

FEM

FEM

MM

Number

204

44

132

Evaluation

Projected Uncertainties

0 g Data

O-g Data

Table 2.1: Breakdown of control protocols implemented on STS-67.
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2.1.4 Finite Element Model

As stated previously, the topics of finite element modeling and updating are quite

large and complex, and are not the focus of this work. These models are therefore

assumed to be complete at the beginning of this work. The 1-g and 0-g finite element

models are due to Glaese and Miller [50, 39]. A summary of the models is given here

to aid in the discussions of the uncertainty localization and projection techniques

presented in the subsequent chapters.

In order to fully understand which degrees of freedom the uncertainties are lo-

calized to in the finite element model, a breakdown of the nodal numbering system

is presented. Table 2.2 gives a summary of the nodes and elements for the model.

Figure 2.3 shows a stick figure of the MACE FM hardware along with the nodal

numbering scheme. Note that the nodal numbering of the model is structured such

that the 0-g model is developed by deleting nodes 81-113 from the 1-g model. For a

more complete description of the finite element models, please refer to Refs. 50, 39.

In addition to the physical modeling of the structure, gravity effects are also

incorporated into the 1-g model. These gravity effects include sag and twist pre-

deformations, and pre-loading of members, pendular effects on articulating appendages,

and suspension cable violin behavior. These effects are included by adjusting the 1 g

Type Element

Aluminum Collar Beam

Lexan Strut Beam

Active Strut Beam

Reaction Wheel Rate Gyros Beam

Primary Gimbal

1-g Node Number

1-3,12-14,27-29,

38-40,49-51

O-g Node Number

1-3,12-14,27-29,

38-40,49-51

4-11,30-37,41-48 4-11,30-37,41-48

15-26 15-26

52-54 52-54

55-62 55-62Beam

Secondary Gimbal Beam 63-70 63-70

Reaction Wheel Assembly Beam 71-80 71-80

Suspension System Beam 81-113 n/a

Table 2.2: Nodal numbering and element descriptions for the MACE FM
finite element model.
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Figure 2.3: MACE FM nodal numbering in the I-g finite element model.

stiffness matrix using a iterative, nonlinear static, stress stiffening procedure: -

Table 2.3 shows the frequencies and proportional damping ratios for the control-

lable/observable modes in the 1-g and 0-g finite element models for the MACE FM.

The damping in the MACE FM was assumed to be both proportional and concen-

trated, however. The proportional damping was identified using accurate measure-

ment models fit to transfer function data. The concentrated damping is the result of

point dampers in each of the gimbals and reaction wheels, and at the end of each of

the suspension cables. In developing an: input-output model for MACE,-additional

dynamics and gains were added. These included sensor dynamics and notch filters on

the rate gyros, Bessel filters on the strain gauges and tachometers, digital computer

delays, and various conditioning gains on each of the actuator and sensor channels.

In addition to the scnsor, actuator, and computer modeling, the nominal systcm

for the MACE test article also includes two servo systems. Three speed servos from
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Mode Type

Torque wheel#1
Torque wheel#2

Torque wheel#3
Suspension- bounce
Suspension- rotary pendulum
Suspension- tilt
Primary X Gimbal

Primary Z Gimbal
SecondaryX Gimbal
SecondaryZ Gimbal
Suspension- compound pendulum

1st Z bending
1stY bending
Suspension- 1 st X violin

Suspension - 1 st Z violin

2 nd Z bending

2 nd Y bending

3 rd Z bending

3 rd Y bending

Suspension - 2 nd Z violin

3 rd Y bending

Suspension - 3 rd Z violin

Suspension - 2 nd X violin

4 th Z bending

4 th Y bending

5th Y bending

5th Z bending

6th Z bending

6th Y bending

7 th Y bending

1-g

(f (Hz)

0.00

0.00

0.00

0.20

0.24

0A4

1.19

1.23

1.26

1.30

1:84

2.24

4.60

7.13

7.24

9.56

9.80

11.04

11.29

11.66

t3.I4

14.68

15.12

16.19

17.82

24.90

39.41

48.84

49.01

56.16

1.000

1.000

1.000

0.100

0.091

0.034

0.038

0.055

0.050

0.060

0.066

0.022

0.070

0.014

0.006

0.012

0.039

0.037

0.059

0.013

0.054

0.020

0.021

0.018

0.009

0.014

0.014

0.019

0.016

0.015

0-g

f (Hz)

0.00

0.00

0.00

n/a

n/a

n/a

0.00

0.00

0.00

0.00

n/a

2.27

3.73

n/a

n/a

9.53

9.47

10.95

11.13

n/a

13.44

n/a

n/a

16.11

17.85

25.03

39.56

49.18

49.67

56.97

¢

1.000

1.000

1.000

n/a

n/a

n/a

0.00

0.00

0.00

0.00

n/a

0.021

0.064

n/a

n/a

0.041

0.029

0.042

0.056

n/a

0.067

n/a

n/a

0.018

0.009

0.014

0.014

0.019

0.017

0.016

Table 2.3: Frequency, damping ratio, and description

in the finite element model for the MACE

and 0-g. (0-60 Hz range)

of each mode retained

FM test article in 1-g
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the collocated tachometersto each of the reaction wheelsand a DC spin are used

to prevent nonlinear stiction in the wheelsfrom affecting the open and closedloop

experiments. There are also four proportional-integral servosfrom eachencoderto

collocated gimbal. These are used to act as a nominal pointing system, to reduce

the nonlinear stiction effects in the gimbals, and to enablethe identification of the

systemin 0-g, where the gimbal modeswould otherwisebe rigid body modes.Note

that the frequenciesanddamping ratiosshownin Table 2.3,especiallythe gimbal rigid

body modes,are substantially different when the gimbal servosystemsare included

in the model. After retaining only thosemodeswhich arecontrollable/observablein

the input-output model, and adding the additional dynamicsand damping, the final

input-output model has256 states,23outputs, and 9 inputs.

2.2 Assessment of Modeling Uncertainties

The most difficult aspect of this thesis is localizing the uncertainties, both mean error

and variance, to specific degrees of freedom. If this is accurately accomplished, the

projection techniques such as 1-g to 0-g can be accomplished in a straightforward

manner. The first step in this process is to define all the possible modeling uncer-

tainties, and how they manifest themselves into the model. (Note that this may be

difficult in some cases.) A complete description of all uncertainties also provides the

theoretical groundwork for the uncertainty localization process. All uncertainties can

be divided into the general groups of Linear and Nonlinear. Within these general

groups, 5 sub-groups can be defined which describe the types of uncertainties be-

tween the hardware and structural model of a general system. These will be called:

Physical, Modeling, Coupling, Testing, and Nonlinearities.

2.2.1 Physical Uncertainties

Physical uncertainties are those where the physics of the system has been captured,

but the parameters have incorrect values. These uncertainties, which are traditionally

treated with updating techniques, can be divided into two smaller groups: Material
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Figure 2.4: Sample beam element and reference axes and notation.

uncertainties such as the modulus of elasticity, density, and Poission's ratio; and

Geometric uncertainties such as area and inertia (or their primitives such as radius,

width, etc.), and length. These are also the easiest to be updated using uncertainty

localization techniques.

To demonstrate the physical uncertainties which may lie inside a specific finite

element, a beam element is broken down into its simplest form. Figure 2.4 shows the

reference axes and notation used for this beam element. The element has 12 degrees

of freedom, being 3 displacements and 3 slopes at each end of the element, or

U _ ...... ]T (2.1)

The stiffness and mass matrices for this element can be written in block form

k = [ k** k,B

[ kAT kss

rr_AA rr_AB

m = (2.:)
mTB 7"/_BB

In order to simplify the examination of the possible uncertainties within these

elemental matrices, only the sub-matrices kAa and m** are examined, with the other
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sub-matricesmatricesunderstoodto besimpleextensions.Assuminga tubular, sym-

metric cross-section,the 6 × 6 sub-matricesaregiven by

mAA

kAA

pAL 0 0 0 03

I_._oAL 0 0 0
35

_ 0 _
35 210

JeA_L_ 0
3

symmetric pAL3
105

EA 0 0
L

12EI 0
L 3

12EI
--D-

symmetric

0 0

0 0

-6EI
0 -_

3EJ 0
5(l+v)L

0 4El
L

0

210

0

0

0

105

0

6EI

0

0

0

4EI

L

(2.3)

where the area and inertias for a tube can be further written as

I = 7rr3t

J = 27rr3t

A = 2_rt (2.4)

where r is the radius and t is the thickness.

Table 2.4 shows a summary of the mass and stiffness change matrices (in % change

of entry), for changes in the material and geometric properties. There are a few items

to notice. First, the change in modulus of elasticity (E) and change in density (p) only

affect the stiffness and mass matrices respectively. Also, a change in the thickness (t)

is the same as a change in the modulus of elasticity (E) and density (p). As a result,

the uncertainty localization techniques and finite clement model updating techniques

cannot distinguish between these two. The change in radius (r) is similar to the

change in the thickness (t) (and combination of changes in modulus of elasticity (E)

and density (p)), except for the extensional and torsional degrees of freedom. As with
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I° ]0 0

AmAA = 0 0 /_kA A _---

0

0 0

0 0

(_)AE = I%

1
1

1

1

1

1
1

1 1] AmAA= I)[0:]1 1 0

1 1 AkAA = 0 0

1 ' 0
1 1 0 0

1 1 0

(b) Ap = 1%

ATnAA 1 ]1

1 1 /XkAA =
3

1 1
1

(c) Ar = 1%

1 ]3

3 3

3

3 3

3

I]1 1

1 1 AkAA =
1

1 1
1 1

(d)At = 1%

1
1

1 1
1

1 1

Z2_mAA i ] [i1 2 3

1 2 AkAA=_ 3 2
1 ' 1

2 3 2 1

2 3 2

(e) AL = 1%

2[0AmAA

1

i] l°0 0 0

0 0 Ak^^= 0_,,0
0 ' l+v

0 0 0 0
0 0 0

(f) Av = 1%

Table 2.4: Breakdown of mass and stiffness element change matrices for

changes in physical parameters for a tubular beam element.

the case of change in the thickness (t), if these degrees of freedom are not measured,

it is quite difficult to distinguish the difference between them. The change in length

(L) is quite independent from the others, and affects both the mass and stiffness

matrices. And the change in Poisson's ratio (v) affects only the torsional degree

of freedom in the stiffness matrix. If this degree of freedom is not measured, the

effects of this change are minimal. Insights such as the relative importance of these

change matrices and which of them can be observed are a very important basis for

the uncertainty localization techniques. Note that similar analyses can be made for

any cross-section and any type of finite element.

2.2.2 Modeling Uncertainties

Modeling uncertainties are those errors in which the physics of the hardware has

not been represented correctly. These can include discretization issues, selection of
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correct element types, or unmodeled boundary conditions. Most of the uncertainties

in this group can be avoided with thorough and correct modeling of the given system.

Discretization errors can usually be avoided by using a fine mesh of elements in

the model. If further mesh refinement does not reveal differences in the frequency

range of interest, there is usually no discretization errors. In a few cases, such as when

a piezoceramic is attached to the top of a more flexible member, a discontinuity can

occur in the strain, such that an extremely fine mesh is needed. Many times, however,

these problems can be avoided by additional corrections. An example of this is incor-

porating a static gain into the input-output model of the system in order to overcome

inaccurate modeling of the discontinuous strain at the edge of a piezoceramic [51].

The choices of element types are very important in representing the dynamics

of the structure. If an incorrect element type is used, such as using a beam element

when a shell element is more appropriate, or the boundary conditions are mismodeled,

the physics of the model has not been captured correctly. Therefore, any localized

adjustment is not physically correct, and cannot be used as a basis for updating or

projection.

2.2.3 Coupling Uncertainties

There are many different types of systems that couple with the dynamics of the

finite element model, only a few of which are explained here. Note that physics

of the couplings are assumed to be modeled correctly, but the parameters of which

may need adjustment. The couplings that are described in this work are divided into

two groups: Internal and External Couplings, Internal Couplings are those additional

components of the system which need modeling, but are not necessarily modeled with

finite elements. These include boundary conditions, joints and attachments, actuator

and sensor dynamics, time delays, various gains, etc. These components must be

modeled and then appended to the finite element model. By doing this, these models

can be parameterized in the identification technique in order to develop uncertainties

attributed to components themselves. Therefore, if they are parameterized in tim
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model, the uncertainty localization can be accomplished,eventhough they havenot

beenincluded in the finite elementmodel.

External Couplingsare thosewhich are applied externally, or due external sys-

tems. Threevery important External Couplings are aerodynamic, gravity, and control

systems. The modeling of the coupling between an aerodynamic model and a finite

element model is a very difficult process to undertake [52]. In addition to uncertain-

ties in the finite element model, even larger uncertainties exist in the homogeneous

disturbance and aerodynamic effects. Localization for this type of system would be

a great challenge.

The coupling of a control system with a model may or may not have a large

impact on the uncertainty localization procedure. The closed loop system can usu-

ally be parameterized in the identification process, which makes it similar to that of

adding actuator or sensor dynamics. However, care must be taken in understanding

the impacts of the control system on the other uncertainties. For instance, a high

bandwidth compensator may control the closed loop system so well that the sensor

signals are much smaller than they would be in open loop. This increases the sus-

ceptibility of the system to uncertainties such as sensor noise and nonlinearities. For

MACE, the servo systems around each gimbal and reaction wheel actually benefit

the uncertainty localization process by reducing the nonlinear stiction effects in the

gimbals and reaction wheels. The control system, however, must be parameterized

in the identification process. An even more complicated system is one which couples

both aerodynamic and control system effects with the finite element model [53].

Wada [54] states that the modeling of the gravity (and suspension) effects rep-

resent a major obstacle to the testing of space structures, rather than a minor in-

convenience. The coupling of gravity into a system has many different effects such

as geometric stiffening of members, initial deformation, and effects on actuators and

sensors. Because the focus of this work is on projection of uncertainties from 1-g into

0 g, a more detailed explanation of gravity coupling is given here. This summary is

due to Rey [55, 56], where an excellent overview of the previous work and thorough

examination of the modeling of these gravity effects is presented.
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Figure 2.5: Nodal and distributed loads on a beam element in gravity.

The development of an adjustment to the elemental stiffness matrix due to gravity

requires stress evaluation and integration of the nonlinear strain-displacement rela-

tions. Finite element modeling software usually does this using an iterative method

to create the internal stress description. Rey [56] developed an elemental stiffness

adjustment due to gravity stiffening by assuming nodal and distributed loads. Fig-

ure 2.5 shows a beam element with a distributed gravitational load acting over the

element, and nodal forces and moments acting at each end. The nodal forces and

moments are due to nodal masses and inertias coupling with gravity in the element.

The adjustment to the 1-6 portion of stiffness matrix can then be written as

b (M,A+MB)COL2 -(M_+M_)COL2 0 -(pAL9)ct_12 0

3(2F B -pAgg)sO 0 10(2M_ -pAL2g)cO CTM. B FS__sO
5L 10L 6L 10

k2.2 M_A_0 -k2.6 k2.5L

(2F_-pALg)JsO (MA +MB)cO -(IOM_ + IOM_-7pAL2g)cO
2AL 6 60

symmetric (4F_ - 3pALg)Lse 0
3O

kgAA-----

where cO is cos 9, sO is sin 0, and 0 is the the angle between the horizontal and the

long axial of the beam, as shown in Figure 2.5.

In comparing the original stiffness matrix in Equation 2.3 with that of the gravity

adjustment stiffness matrix of Equation 2.5, there are a few couplings which to ob-
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serve.An axial load (Fx) stiffensor de-stiffensall degreesof freedomexceptthe axial,

while also coupling the bending and axial degreesof freedom. A bending moment

(My, Mz) couples the axial and torsion degrees of freedom with the bending degree

of freedom, while a torsional moment couples the out of plane bending degrees of

freedom. The distributed loading, which is closest to a gravity loading, stiffens or

de-stiffens all bending and torsion degrees of freedom, while also coupling axial and

torsional degrees of freedom with the out of plane bending degree of freedom.

Another gravity effect is that of initial deformation in the form of sag (droop) or

twist of the system. Initial deformation of a system can be written as a transformation

between the nominal and deformed system, or

/(de f = TTkT (2.6)

Again examining the 1-6 portion of the system, the transformation matrices for sag

and twist are

rsagAA

cO 0 -sO

0 1 0

sO 0 cO

0

TtwiA A _-

cO

0

sO

0

0

1

0

1 0 0

0 cO sO 0

0 -sO cO

1 0

0 0 cO

0 -sO

-sO

0

cO

0

sO

cO

(2.7)

(2.8)

where sO and cO are sin 0 and cos 0 respectively.

The drooping of a system as in Equation 2.7 has the effects of coupling the axial

and vertical bending degrees of freedom, and coupling the torsion and bending degrees
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of freedom.An initial twist about the neutral axisof the system,givenin Equation 2.8

essentiallycouplesthe out of planebending degreesof freedom.

2.2.4 Testing Uncertainties

Depending upon the type of testing, many uncertainties can also enter during the

tests. Issues such as noise, bias, and bandwidth in sensors and time delays in com-

puters can all can impede accurate measurements of the system. Strain gauges are one

example of a sensor which is also very dependent on the attachment to the system.

Also, unknown disturbances such as aerodynamics can lead to many uncertainties

in the model. Additional testing uncertainties can arise when using shakers and ac-

celerometers for modal analysis. The addition of these sensors and actuators should

be modeled and parameterized in the identification process. Using actuators and sen-

sors of good quality, and modeling all actuators, sensors and time delays thoroughly

is the simplest step in avoiding these many types of uncertainties.

2.2.5 Nonlinearities

Nonlinearities in some form act on every system, and usually only hinder the un-

certainty localization process. One of the primary objectives of using variance un-

certainties in addition to mean uncertainties is to enable the localization of weak

nonlinearities. Strong nonlinearities only degrade the uncertainty localization pro-

cess, and usually require a nonlinear model, in addition to the finite element model.

Nonlinearities in a system can include material nonlinearities, stiction, dead band

stiffness in joints, and changing boundary conditions such as loss of tension in a

cabled suspension system. There are four manners in which to treat nonlinearities in

a system: ignore them; use uncertainty localization techniques if they are weak; add

additional components which downgrade a strong nonlinearity to a weak one, such as

using a servo controller or DC bias; add a nonlinear model to the system. The work

in this thesis attempts to address the second option.
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Group Sub-group Type

Linear PhysicalParameters Material
Geometric

Modeling Discretization
Incorrect Element Physics

Internal Coupling

External Coupling

Testing

Nonlinear Weak

Table 2.5:

Strong

Boundary Conditions

Joints/Attachments
Actuator/Sensor Dynamics
Time Delays

Aerodynamic
Gravity
Control System

Sensor/ProcessNoise
SensorBias

Capturable

Easy Difficult

,/

,/

,/

,/

,/

Table of uncertainties between structural hardware and models,

along with the ability to capture them using identification and/or
localization methods.

2.2.6 Summary

Table 2.5 gives a summary of the uncertainties that may exist between a structural

model and set of hardware. In addition, the capturability, or ability of the tests and

methods in this work to develop a physical mean or variance uncertainty which is the

source of the uncertainty, is given as either easy or difficult. Physical uncertainties, for

instance, are usually easy to localize. This is intuitively correct because of the wide use

of model updating techniques available for these parameters. Modeling uncertainties,

however, are far more difficult to capture with these techniques, primarily because

the dynamics have not been captured correctly. For instance, if the wrong type of

discretization is used, it will be difficult to localize these to uncertainties to correct

physical degrees of freedom.

Internal couplings such as such as boundary conditions and actuator/sensor dy-

namics and joints and attachments can be localized by using the identification algo-
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rithm, rather than a finite element error localization technique. However, this can only

be done if they are modeled and appended to the finite element model. Uncertainties

in these dynamics can then be localized by parameterizing them in the identification

process. External couplings complicate the system quite easily. Therefore, they must

be examined case by case. Gravity couplings, for instance, are usually captured in

the finite element model by an adjustment to the stiffness matrix. Therefore, they

lend themselves to uncertainty localization.

It is difficult to know if testing uncertainties and nonlinearities can be represented

with a physical uncertainty. It is assumed that the noise uncertainties, because they

are small, will manifest themselves as larger variance uncertainties. Random bias

errors that are large, however, cannot be represented as a linear physical change to

the system. Many of these uncertainties can be avoided by using quality actuators

and sensors, modeling them correctly.

Nonlinearities, however, can have the most detrimental effects on the localization

process, especially if they are strong. If they are weak, or can be made weak by

the addition of another component to the system such as a controller, these types

of nonlinearities are assumed to be identified using variance uncertainties. If the

nonlinearities are strong, a nonlinear model must be included.

In order to successfully identify and localize uncertainties, steps must be taken to

reduce the effects of those uncertainties which are not capturable. These include:

• Refining the finite element mesh to prevent discretization and joint and/or

attachment errors.

• Understanding the physics of the hardware such that the correct element types
are used.

• Completely modeling boundary conditions and actuator and sensor dynamics.

• Completely understanding all coupling effects, and their impact on the finite

element model.

:• Compieiely: understanding all nonlinear:=effects, including modeling all'moder:

ately nonlinear effects.

Once these precautions have been taken, the uncertainty localization process has the

best chance of capturing the most accurate mass and stiffness uncertainties.
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Chapter 3

Identification of Nominal

Uncertainty Model

In the previous chapter, a complete description was given of uncertainties that may

exist between a finite element model a set of hardware. With these identified, the next

step is to create and implement a set of tests which will allow the measurement of all

uncertainties. This chapter gives a complete set of tests for hardware such that the

uncertainties in Table 2.5 are observable and can be localized. A description is then

given of the Discrete Extended Kalman Filter, the recursive identification/parameter

estimation algorithm used to identify the modal parameters for each test. Once the

identifications are complete for all tests, the estimated parameters can be used for

creating accurate control design and uncertainty models for the 1-g system, termed

"Nominal", and/or projection into 0-g, termed "Modified," for control design (Chap-

ter 4). Finally, each of these techniques including testing, identification and estima-

tion of parameters, and creation of control design and uncertainty models in l-g, are

demonstrated for the MACE experiment.
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3.1 Testing for Uncertainty Identification

Once the uncertainties between the finite element model and hardware have been

evaluated, and the precautions have been taken to reduce those uncertainties that

do not lend themselves for localization, the next step is to develop a set of tests

which best observes all other possible uncertainties. These tests vary all parameters

which may lead to either mean error or variance uncertainties between the model and

hardware. Table 3.1 gives a summary of all test parameters that could be varied.

Those tests that aid in the development of an uncertainty model by observing mean

error and variance uncertainties of the nominal model described in Table 2.5 are

denoted "Uncertainty." Those tests which require a change to the system, such that

there is a fundamental change to the finite element model, are termed "Update."

The simplest and easiest uncertainty test is using a different actuator for the dis-

turbance. Observing sensors using different disturbance source locations on a struc-

ture increases the number of parameters being identified and observes both physical

modeling uncertainties and the linearity of the structure. Other uncertainty tests in-

clude disassembly/reassembly, allowing long periods of time between tests, and chang-

ing disturbance levels. Disasseinbly/reassembly changes the loading in the joints and

members, a possible source of weak nonlinearities. Nonlinearities can also usually be

detected by changing the disturbance level. This is especially true in cases of non-

linear damping. :Atso, by allowing longer time between tests, small changes in the

structure can be detected such as plastic rather than elastic sag in a flexible member.

Other tests which are usually used for updating smaller portions of the finite

element model are boundary condition changes and deterministic changes such as

adding a known mass (or stiffness) to the structure. Wada et al. developed the most

well-know of these called the Multiple Boundary Condition (MBC) tests [54], where

the structure and gravity effects are modeled and updated by changing the bound-

ary conditionsl remodeling, retesting, and updating. These tests are excellent for

model updating, but need to be adapted for uncertainty localization and projection

as described in this work. Because there is usually a fundamental change to the
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Test Parameters

Actuators

Disassembly/Reassembly
Time betweentests

Disturbance Levels

Boundary Conditions
Structural Change(i.e. add mass)
Non-Structural Change(i.e. closedloop)

Useof Test

Uncertainty

,/

Update

,/

Table 3.1: Set of test parameters and whether they are primarily used for

the development of an uncertainty model, or finite element model

updating.

nominal finite element model for these tests, the frequency and mode shape infor-

mation cannot be included in the nominal uncertainty model, which is based on the

nominal finite element model. This information can only be added into the uncer-

tainty model-localization-projection process at the localization level as uncertainties

in specific portions of the model.

A final uncertainty test is termed system change and can also be used to develop

the nominal uncertainty model. An example of this type of test parameter is the

addition of a control system to the hardware. Care must be taken, however, in using

a control system because of its effects on other uncertainties. The addition of a control

system may increase effects such as nonlinearities, which would degrade the accuracy

of the uncertainty model.

If the necessary precautions are taken in modeling of a system such as mesh re-

finement and modeling of actuators and sensors, and a complete set of tests such as

those in Table 3.1 are run to thoroughly observe all uncertainties, the uncertainty

localization procedure has the best possible chances of accurately predicting the com-

plete uncertainty model. The next step is to identify the modal parameters from each

of the tests.
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3.2 Discrete Extended Kalman Filter

There are many identification techniques which can be used to fit mathematical mod-

els to test data. Because of the special nature of this work, a technique is needed

which enables the easy extraction of accurate modal parameters such as frequencies

and normal modes from measurement models, and an easy parameterization such that

a finite element model can be combined with actuator and sensor dynamics, time de-

lays, and closed loop dynamics. The technique proposed in this work to identify the

system is the Discrete Extended Kalman Filter (DEKF) [57]. The DEKF satisfies

each of these requirements and in addition, the DEKF gives additional information

on the estimation of the modal parameters in the form of a measurement error from

the covariance matrix. Drawbacks to this technique include the use of an initial pa-

rameterized model and covariance, and convergence and bias problems. Each of these

drawbacks are addressed in this chapter.

3.2.1 Finite Element Based DEKF

The DEKF is essentially a nonlinear filter which is linearized and updated to a stan-

dard Kalman Filter at each time step. Karlov et al. [6] developed the continuous time

version of the Extended Kalman Filter and applied it to a lightly damped structure

for identification and parameter estimation in control design. Because identification

of a system is usually discrete in nature, and higher order filters are an easy and

natural extension, the Discrete Extended Kalman Filter (DEKF) is developed here.

It is assumed that a finite element model has been developed for the system of

the form

Mi:l + Cil + Krl = B_u

y = Cyr_+v (3.1)

where M,C, and K are the mass, damping, and stiffness matrices respectively, r]

is a vector of n physical degrees of freedom, u and y are the inputs and outputs

of the system, v is the sensor noise, and Bu and Cy are input and output pickoff
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matrices. Note that the outputs areassumedto be displacements,although ratesand

accelerationsare simple extensions.Using any commerciallyavailable finite element

software, the undamped,no noise,freevibration caseis solvedas

M_A + K_ = 0 (3.2)

where A, and • are the m eigenvalues and eigenvectors of the system (usually m < n).

The eigenvectors are usually mass normalized such that

(I)T_lf(I) ----- I

_2TK_ = A (3.3)

Using a change of basis r] = _q and Equation 3.3, and premultiplying by _r

Equation 3.1 yields

+ ,_Tc_o + Aq = _2TBuu

y = Cy,_q+v

Assuming proportional damping, the system becomes

where

+ 2Z_t 0 + _2q = c_TBuu

y = Cye2q+v

Z = diag {_'i}

f2 = diag { V_/}

(3.4)

(3.5)

v=[ cy4 0

q

4

q

+

+v (3.6)

?2
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are the frequencies and damping ratios of the system. Rewriting Equation 3.5 (in the

traditional 2 nd order form) in 1st order or state space form



In proceedingfurther with the derivation of the DEKF, a few notational simplifi-

cations areusedwithout lossof generality. First, becausethe systemin Equation 3.6

is decoupledinto modes,a single mode is used. It is also assumedthat the input

and output matrices, Bu and Cy, use only one degree of freedom. And finally, a

single input and single output are used. Additional modes, linear combinations of

modes within the input and/or output matrices, and additional inputs and outputs

are assumed to be simple extensions. Therefore, the system becomes

Xi = Aixi 4- bijuj

Yk "= CkiXi "[- Vk (3.7)

where the i th mode, jth input, and k th output are used and

0 1
Ai =

2 -2 icoi--CO i

0
bij --

_)jibuj

Ck_ = CykCki 0 ]

qi
Xi _--

qi

Note that buj and Cyk are constants.

It is also assumed that the input enters as a zero order hold process in the iden-

tification experiment. The continuous time system in Equation 3.7 can be converted

to discrete time using the matrix exponential [58].

Adi = CAidt

bdij = A.(l(Adi - I)bo (3.8)

This assumes there is no delay between the sensor measurement and control input

except for the 1/2 cycle from the zero order hold. Additional delays can be easily

added to the system, see Ref. 58. The output equation does not change.

In a general system with multiple modes, inputs, and outputs, and sensor/actuator

dynamics and time delays, there are many different parameters that can be estimated.
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For the uncertainty model (and subsequentuncertainty localization and projection

problems), the parameters of concern are the frequencies, damping ratios, and normal

modes. A more general system is addressed in the next section. Therefore, the

parameters of the system that are updated are defined as

[O=
[ Odi _i (_ji _)ki

(3.9)

If a state vector at time t is defined as

z(t)= x,(t)
o(t)

(3.10)

the DEKF equations are

_(t+ l[t) = Aa,(t)xi + ba,j(t)uj(t)

2(t+l]t+l) = _(t+l]t)+ K(t+l)v(t+l)

v(t+l) = yk(t+l)-C(t+l)_(t+l]t)

P(t+ llt ) = A(t)P(tlt)A(t) T

P_(t+llt) = C(t+l)P(t+l]t)C(t+l) T + Evv

P(t+lIt+l ) = P(t+llt ) - K(t+l)C(t+l)P(t+l]t)

K(t+l) = P(t+llt)C(t+l)rP_(t+l]t) -I (3.11)

where

Adi(t) = Adi]o=o(.)

bdij(t) = bdi jlo=o(tlO

Cki(t + 1) = ckilo=o(t+_lo

Adi(t) 0 (Aaixi + bdquj(t)) Io=o(.)._=_(,,o
A(t) =

0 I

and C(t + 1)= [ cki(t + 1) o (Cki2gi) io=o(t+llt),xi=_i(t+llt) I

The parameters are assumed to be constant over the time of the identification, and

the system contains no process noise. Notice that although the algorithm is discrete
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in nature, the parametersthat areupdated are from the physical continuousmodel.

Theseparameterscan thenbeusedfor modelupdating, developmentof anuncertainty

model, and/or control design.

3.2.2 Additional Dynamics

The derivation of the DEKF in Section 3.2.1 uses a single mode, and single input and

output. Multiple modes, inputs, and outputs are assumed to be simple extensions.

For more practical systems, however, additional dynamics should be included in the

system such as actuator and sensor dynamics, time delays, and even closed loop

dynamics. Dropping the (-)i's from the nominal finite element model in Equation 3.7,

and discretizing using a zero order hold,

2 = Adxq-bdu

y = cx + v (3.12)

Dynamics on the inputs and outputs are easily appended to the finite element model.

2

2i

2o
Ad bdCo 0

= 0 Ai 0

boc 0 Ao

gg

Xi

Xo

bd

+ 0

0

0

bi

0

U

Ui

Y

yo
=[cO0 OOco

X

Xi A-

Xo

?)
Vo

(3.13)

where (')i and (')o refer to the dynamics on the inputs and outputs respectively.

The DEKF:can now be developed in an analogous manner to that in Equations 3.9-

3.11 using this new parameterization. In addition, parameters of the dynamics on the

inputs and outputs can easily be added to the DEKF by adding them to the parameter

vector in Equation 3.9 and taking the appropriate derivatives in the derivation.

A closed loop system can also be easily added to the parameterization. If a

dynamic Compensator is used, it can be appended to the system in an analogous

manner to the output dynamics in Equation 3.13. Then the system is closed to
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createa new parameterization. For example,if constantoutput feedbackis used,the

systembecomes

= (Ad -- bdc)x + bdu

y = cx+v (3.14)

The DEKF can the be developed analogous to that in Equations 3.9-3.11.

3.2.3 Initialization

Although the DEKF has the advantage of having a parameterization that is flexible

enough to include the dynamics of components such as the finite element model and

actuator and sensor dynamics, this is also a disadvantage. The initial model must

be a fairly accurate representation of the data. If the DEKF is used to identify a

single model, any initial parameterized model can be used. If it is used for multiple

identifications, however, for combination into an uncertainty model, the same model

and parameterization must be used for each identification. The model and DEKF

which present the easiest, most intuitive results is the finite element model derivation

presented in the previous section.

In addition, the initial covariance matrix and noise must be chosen. Initialization

of the covariance and noise intensity matrices must be done using insight of the

user. For the technique presented that uses no process noise, the quality of the final

parameter estimates is rarely dependent upon the initialization of these matrices.

When the DEKF actually has process noise, however, the final parameter estimates

are biased [59]. A few precautions can be taken prior to using the DEKF to prevent

convergence and bias problems. These are:

• A good initial model, i.e. frequency errors less than 10%, damping errors less

than 50%, and mode shape errors less than 50%.

• Initialize the covariance matrix with 3a error values less than the actual errors,

i.e. frequency 3a of 10_, damping 3a of 50%, and mode shape 3a of 50%.

• Initialize the noise intensity to approximate physical values, and vary if conver-

gence rate is too fast/slow.
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3.2.4 Convergence

An excellent treatment of the convergence and bias properties of the DEKF is given

in Ref. 59. The convergence of the general DEKF algorithm is not guaranteed. How-

ever, the case presented in the this work contains no process noise, even though there

is a deterministic input, and is therefore quite general for identification purposes and

guarantees can be made on convergence. Ljung [60] analyzes the properties of recur-

sive stochastic algorithms including the Discrete Extended Kalman Filter [59]. This

is done by examining the stability properties of an associated differential equation.

For the DEKF, Equation 3.11 is examined assuming the parameters 0 = constant.

For the case of no process noise, termed a "deterministic model" case by Ljung [59],

convergence of the filter is guaranteed if it is equipped with a projection facility to

keep 0(t), in a compact subset of {OIAdi(t ) stable}. For an open loop system, this

is easily accomplished by bounding the allowable parameter space to be finite, and

keeping Adi(t) stable by bounding the frequency and damping ratio parameters. For

a closed loop system, this is more difficult, and care must be taken in implementing

the projection facility. If these requirements are met, the estimate converges with

probability 1 to a stationary point of the function

V(O) = E [v(t)TE;lv(t)] (3.15)

Although Equation 3.15 has only local minima for stationary points, the estimate can

be proven to be a global minimum if there exists an estimate 00 such that

cki(Oo)(ZI- Adi(Oo))-'ba_j(Oo) = Co(ZI- Ao)-'bo (3.16)

where Co, A0, and b0 represent the "true" system. Equation 3.16 can be represented in

another way by stating that the innovations v(t) are unbiased, which is addressed in

the next section. Although Equation 3.15 is not necessarily the objective of a Kalman

Filter, minimizing this performance objective is a good relative measure of the ability

of the estimation algorithm.
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3.2.5 Bias

In addition to there being no convergence guarantees for the DEKF, there are also no

bias guarantees [59]. For the general DEKF, if the noise intensities are incorrect, the

estimates are always biased. Unfortunately, there are no simplifying solutions for the

deterministic model case for bias as there is for convergence. The estimates for the

DEKF are said to be unbiased if the innovations are both unbiased and white. The

following tests for these properties are taken from Refs. 61, 62. To rigorously prove

that the innovations are unbiased, a X 2 test on the normalized innovations squared

is used. To prove that the innovations are white, that is, uncorrelated in time, the

autocorrelation function of the innovation sequence is calculated.

There are two tests given in Refs. 61, 62, however, which are much easier to

calculate and give a qualitative but not rigorous test for unbiasedness of the estimates.

First, the noise intensity of the filter is checked by examining the innovations sequence.

If 95% of the innovations lie within the 2a-gate, then the noise intensities are set to

acceptable levels. Then, the bias of the innovations will qualitatively tell whether

the DEKF is biased. The DEKF is therefore said to be unbiased if the mean of the

innovations v, is less than the 2a-gate, or if E Iv] < 0.02. [2a_].

3.2.6 Uniqueness

Even if the algorithm is guaranteed to converge and be unbiased, the uniqueness

of the solution is not necessarily guaranteed. An example of this can be seen by

examining the original system in Equation 3.7. Equation 3.16 can be satisfied for

this system for an infinite number of solutions because the ¢ij and Cki matrices can

be scaled arbitrarily. If, however, one sensor and one actuator are collocated such

that ¢ij = Cki for the i th mode, jth input, and k th output, then the estimate is a

global, unique minimum of Equation 3.16 and the estimate is unique. This is quite

important when attempting to solve for the normal modes of multiple identifications,

and then combining the information into an uncertainty model.
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3.3 Uncertainty Model

After performing the numerous tests on the hardware by varying the test parameters

given in Table 3.1, and utilizing the DEKF algorithm to identify the modal parameters

of the system, the next step is to combine this information into an uncertainty model.

Note that this process is dependent upon the solution to the DEKF being unbiased

and unique.

A stochastic uncertainty model is created by finding the statistics of the modal

parameters, i.e. the eigenvalues and eigenvectors of the finite element model given

in Equation 3.2, and the damping matrix given in Equation 3.5. Once the statistics

of these parameters have been calculated, an accurate control design model can be

created by shifting the original finite element model by the mean parameter uncer-

tainties. In addition, the variances in the uncertainty model are used to create bounds

on critical parameters for robust control design. This process is shown in Figure 1.1.

The DEKF provides additional information in the parameter estimation algorithm

than just the estimates, in the form of a covariance matrix. In the Kalman Filter,

this matrix is the on-line measurement error for the states. In the general DEKF with

process noise on the parameters, the covariance matrix is directly related to the noise

intensity given, and therefore, may be biased. In the deterministic case presented

here, the covariance matrix tends to a steady state of 0 as the estimator proceeds in

time, even if the estimates are biased. Therefore, the statement that the error matrix

gives the absolute measurement error for the estimates is not correct. There is still

good relative information in the error matrix, however. The measurement errors for

each of the parameters act as confidence factors in developing the uncertainty model.

For instance, the variance of parameters that are difficult to estimate tend to 0 at

a slower rate than those that are not. Therefore, a measurement error that is large

implies that the parameter is difficult to estimate, and therefore should be weighted

less when creating the uncertainty model.

Defining the uncertainty A_j as the difference between the estimate _j from the
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jth DEKF measurement model, and the initial parameter 0o.

AOj = 0j - 00 (3.17)

The measured expected value and covariance of the errors can then be calculated.

rti

E[AO]= w-' F_,[Ao_]w_
j=l

T

oovE ol: L ol][ oj-
j=l

Wj = diag {1/aji}
T

w=_wj
j=l

T

(3.18)

(3.19)

where (_ji represents the standard deviation of the measurement error from the DEKF

for the jth estimate of the i th parameter, and T is the total number of parameter

estimates. From the expected value and covariance, the mean error, denoted A0 and
A

bound, denoted A0 can be readily derived

A0= E [A0]

A"'O= 3. _/diag {Coy [A0]}

(3.20)

(3.21)

The bound is assumed to be three times the measured standard deviation of the

parameter. Assuming a normal distribution and the individual weights are Wj = I,

a 99.5% confidence interval results for each parameter. Note that this number may

change depending on the function of the uncertainty model (i.e. what are the effects of

an unstable control system.) When using the stochastic uncertainties for projection,

the mean and entire covariance matrix are used.

3.4 MACE Results

The Middeck Active Control Experiment (MACE) is used to show this process of

creating an uncertainty model for the multiple uses of creating an accurate model for

control design, robust control design, model updating, and uncertainty localization
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andprojection. First, anexaminationof the hardwareis madefor likely uncertainties,

and a setof testsaredesignedto observetheseuncertainties. Then an exampleof the

DEKF implementedon 1-g test data is givento showthe practicality of this technique.

Finally, the uncertainty model is developedfrom the multiple tests performed on

MACE.

3.4.1 Testing

The first step in creating an uncertainty model is an evaluation of the uncertainties

of the system, and the development of a test plan. In Section 2.2.6 a checklist was

presented to prevent those uncertainties which are difficult to localize from occurring

in the system. These include: refining the finite element mesh, using the correct

element types, and modeling of actuators, sensors, etc, and incorporation of coupling

effects such as gravity. For MACE, these have been done, and are summarized in

Ref. 39.

There could be many nonlinear effects, but the largest are likely due to the stiction

of the gimbals and reaction wheels (assuming the rotations of the gimbals are small.)

The large effects of these are relieved by the addition of servo controllers at the

gimbals, and speed servos and a DC bias for each reaction wheel. It is assumed that

these fixes have left the hardware with only weak nonlinearities.

Table 3.1 gives a summary of test parameters that can be varied in order to ob-

serve all possible modeling uncertainties. Note that multiple test parameters can be

varied at the same time. For MACE, there were 24 distinct identifications performed,

attempting each of the 7 test parameters in Table 3.1. There were 4 different actu-

ators, and 17 different sensors used; 3 disassemblies and reassemblies; 1 suspension

change; 1 change in disturbance levels; 1 deterministic change; and 1 system change.

Table 3.2 gives a summary of the tests that were performed for MACE.

The deterministic change performed on MACE was the replacement of the ac-

tive strut with a more flexible passive strut. The boundary condition change was

an adjustment to the suspension system. Because these types of changes require a

fundamental change to the finite element model, they were excluded from the develop-
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Test Parameter Number Comment

Actuators

Disassembly/Reassembly
Time betweentests
DisturbanceLevels

Boundary Conditions
Deterministic Change

System Change

All gimbal actuators

including after 0-g flight

from 2 weeks to 3 months

disturbance halved for 4 actuators

change of suspension system

remove active strut

remove gimbal servos

Table 3.2: Set of tests performed on MACE to observe modal uncertainties

and update the finite element model.

ment of the uncertainty model. The system change involved turning the gimbal servo

systems off, creating a fully open loop system. This change, however, also increased

the adverse nonlinear effects of stiction in the gimbals, thus giving quite different

results. Because a nonlinear model is now required for this system to be modeled

correctly, this test parameter was also not included in the development of the un-

certainty model. These three test parameters affected 8 different identification data

sets. Therefore, the total number of tests performed and utilized in the development

of the MACE 1-g uncertainty model is 16.

3.4.2 DEKF

When the actuator and sensor dynamics, time delays, Bessel filters, and notch filters

are added to the original 160 state finite element model, a 256 state input-output

model is created. To reduce the large amount of computation time required by the

DEKF, the size of this model is reduced. First, the Bessel filters and notch filters are

modeled as time delays, which was a good approximation up to 100 Hz. Of the 80

1-g modes, only 36 of those which are important to the input-output nature of the

system are retained. This reduced the final model size to 96 states.

The damping in the input-output model is assumed to be proportional in order to

create a block diagonal folan. This has the benefit of reducing the number of internal

calculations of the DEKF. Therefore, the concentrated dampers of the suspension
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system are lumped into the proportional damping. This changeprimarily affected

the gimbal pendular modes,and is assumedto be negligible.

The input-output model created from the finite element model is a very good

representationof the structure. Therefore, to initialize the DEKF, 3a valuesof 5%,

50%,and 50% areusedfor the frequencies,damping ratios, and mode shapeentries

respectively. Becauseof the difficulty in finding actual valuesfor sensornoises,a

noiseto signal ratio of 0.2 is usedfor all sensors.Although this seemsa bit ad hoc,

changing these values did not have a large effect on the convergence of the DEKF.

Because the MACE test article easily decouples into two systems (see Figure 2.1),

the Z axis and XY axes, the cross-coupling mode shape estimates are not param-

eterized in the DEKF because of the lack of observability. For instance, when the

disturbance actuator is the Z-axis gimbal, only Z-axis sensors are used in the DEKF.

The X and Y sensors are too noisy for good estimates. In addition, the heavily

damped sensor dynamics and time delays that are appended to the system did not

seem to effect the accuracy of the final solution, and are therefore excluded from the

DEKF parameterization.

As an example of using the DEKF for a MACE identification, a bandlimited white

noise disturbance enters into the X-axis primary gimbal (see Figure 2.1). There were

9 different sensors used: 4 strain gauges, 1 rate gyro in the primary payload and 2 rate

gyros at the center node; and two encoders at the primary (collocated) and secondary

payloads. There were 14 different modes identified, giving 154 parameters updated

in the DEKF. (Note: one sensor and actuator are collocated, and therefore use the

same parameter.) The experiment was performed for 360 seconds, and sampled at

500 Hz.

Figure 3.1 gives a comparison of the FEM, data, and identified model for two

pertinent transfer functions. As one can see, by varying only parameters of the

FEM, an updated model is created which is an excellent representation of the data.

Figure 3.2 shows the time history plots of the frequency and damping ratio for a mode

at approximately 53.5 Hz. The parameter estimates and 3a measurement errors show

tile DEKF beginning to converge. As these time traces are taken out further, they do
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indeedconverge. Notice that the frequencyestimate and measurementerror bound

convergefaster than thoseof the damping ratio estimate. This is intuitively correct

becausethe damping is a muchmoredifficult parameter to estimate. This showsthe

inherent value in the useof the 3a measurementerror bounds in the developmentof

the uncertainty model.

3.4.3 1-g Uncertainty Model

There were 16 identifications run for MACE, 8 which update the XY parameters,

and 8 which update the Z parameters. Therefore, each parameter has 8 estimates to

create the 1-g uncertainty model using Equations 3.21 and 3.21.

Figure 3.3(a) shows how this is done for a sample frequency and damping ratio

using 8 data sets. The mean and bounds show how the weights of each of the identifi-

cations are incorporated into the uncertainty model. The estimates from each data set

(+) are weighted by the width of the grey column to create the mean (x) and bound

(--) for the parameter. For the sample frequency, notice how the mean is heavily

weighted by the "wide" estimates in the 53.6-53.8 Hz range. The two estimates which

are greater than 54 Hz have much smaller weights, and therefore, the bound does not

incorporate them. The same trends can be seen in the sample damping ratio case.

However, notice how the larger weight on the estimate at 0.0225 creates a very large

bound for this parameter.

Figure 3.3(b) shows an overlay of the frequency response of 3 data sets and the

finite element model shifted by the mean errors of the uncertainty model, termed

"shifted" model. The variations in each data set can easily be seen, especially near

the 48 Hz and 54 Hz modes. The shifted model fits nicely as the "mean" of the

data, while the finite element model contains relatively large errors. Using the shifted

model and bounds on the critical parameters from the uncertainty model, any number

of control design techniques can be used to design robust controllers for this system.

Table 3.3 shows the MACE 1-g uncertainty model, based on the 16 sets of pa-

rameter estimates. Notice that only the controllable/observable modes are updated

and retained in the uncertainty model. Except for the gimbal pendular modes, the
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Mode Type

Suspension- rotary pend.
Suspension- tilt

Primary X Gimbal
Primary Z Gimbal

SecondaryX Gimbal
SecondaryZ Gimbal
Suspension- comp. pend.
1st Z bending
1stY bending
Suspension- 1 st X violin

Suspension - 1 st Z violin

Frequency

ffem (Hz) A f(%)

0.24 0.1

0.44 -0.2

1.19 4.2

1.23 6.9

1.26 32.9

1.30 12.6

1.84 -1.6

2.24 -1.6

4.6O -5.4

7.13 -1.0

7.24 -1.5

A

A f(%)

0.3

1.7

10.5

4.2

35.7

2.5

12.1

2.3

4.4

1.5

1.4

Damping Ratio

_fem (%)

2 nd Z bending

2 nd Y bending

3 rd Z bending

3 rd Y bending

3 rd Y bending

Suspension - 2 nd X violin

9.56

9.80

11.04

11.29

13.14

15.12

2.4

4.2

-1.3

-0.3

3.3

-1.7

0.9

1.2

5.6

8.1

11.6

2.1

9.1

8.0

3.7

5.6

5.0

5.9

6.6

2.2

6.9

1.4

0.5

4 th Z bending

4 th Y bending

5 th Y bending

5th Z bending

6 th Z bending

6 th Y bending

7 th Y bending

16.19

17.82

24.90

39.41

48.84

49.01

56.16

1.5

0.4

1.2

-2.4

-5.1

-2.2

-4.5

2.6

1.3

1.2

3.2

2.6

2.9

1.1

1.2

3.9

3.7

5.9

5.4

2.0

1.8

0.9

1.4

1.4

1.9

1.6

1.5

A

/',¢(%)

0.1 0.2

-4.3 2.9

-1.9 2.2

-0.9 5.0

0.7 9.3

1.9 8.7

-5.2 1.8

-1.6 O.3

-2.3 4.4

-0.1 3.4

0.0 0.2

1.3 1.9

-3.2 2.9

0.3 5.8

-4.7 O.9

-3.7 0.9

-0.5 1.8

-0.5 1.4

-0.I 0.1

-0.0 0.3

-0.1 1.0

-0.7 0.5

-0.7 0.2

-0.1 O.9

Table 3.3: MACE 1-g uncertainty model.

frequency errors and bounds are less than 5%. The damping errors are quite large,

however. The primary reason for this is the finite element model was updated using

frequency response data. The windowing and averaging in the process of creating tile

frequency response has the adverse effects of making the system appear more heavily

damped [49]. Because tile raw time histories are used in the DEKF, the damping

ratios are higher, and in addition, more accurate.
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Chapter 4

Uncertainty Localization and

Projection

Once the uncertainties for the 1-g finite element model in the form of mean error

and variance uncertainties on the eigenvalues and eigenvectors is developed, the next

step is to attempt to use all of the information available to predict the uncertainties

in 0-g. The method proposed in this work is to localize both the mean error and

variance uncertainties to specific degrees of freedom in the structure, and then project

them into 0-g. This chapter first introduces the complete error localization and

projection problem. Then, two techniques are described to localize the uncertainties.

The first is a matrix type technique which was used for designing pre-programmed

controllers for MACE on STS-67. The next method is a more practical technique

which uses first order sensitivities and was derived after the MACE flight. In addition,

the projection of the localized uncertainties from 1-g to 0-g is developed for both

methods. Finally, once the theoretical work has been detailed, a small order example

is given to demonstrate each of these methods, and their practical limitations.
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4.1 Problem Formulation

The development of the uncertainty localization and projection methods is given in

the most general form. Therefore, the 1-g system is referred to as the "Nominal"

system and is denoted (')N" The 0-g system is referred to as the "Modified" system

and is denoted (.)_. This allows the uncertainty localization and projection methods

to be easily developed and applied to different systems from the 1-g to 0-g uncertainty

model development described in this work.

The dynamics for the discretized finite element model of the nominal system can

be written as

M_N + C_7)_+ KNVN= 0 (4.1)

where MN C ]RnN ×nN, and KN E ]RTM ×nN are the mass and stiffness matrices respec-

tively and rh, is a vector of nN physical degrees of freedom. Assuming proportional

damping, the dynamics can be described by solving the nN degree of freedom, linear

structural generalized eigenvalue problem

-M_+_A: + K_+_ = o (4.2)

where AN C I_nN×nN and ON C IRTM ×n_ are the eigenvalues and eigenvectors given by

AN=diag [Am ... ANON]

The eigenvectors are assumed to be mass normalized such that

(4.3)

(4.4)

It is assumed that all of the nN eigenvalues and eigenvectors are available. This

assumption can be easily relaxed, although it is important to the techniques developed

here to solve for as many modes as possible, even though the accuracy of the higher

modes might be suspect.
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The finite elementmodel is assumedto be an accuraterepresentationof the hard-

ware. The mean error and varianceuncertainties which exist betweenthe nominal

finite elementmodeland hardwarecanthen bedefinedusinga first orderperturbation

to the nominal system[63].

= + AMN

[(N = t(r` + A Ks

Ar` = AN+AAN

(_r` = _r` + A_r` (4.5)

where (:) refers to the linear model description of the hardware (i.e. data). It is

also assumed that the eigenvalue and eigenvector perturbations are only relative for

the measured parameters, that is fir, _< nr` eigenvalues and the mode shapes at the

r_ _< nN degrees of freedom.

Under the assumption that the nominal eigenvectors (I)r` are a sufficient set of basis

vectors which describe the hardware dynamics, changes in the eigenvectors, A_N, can

be written as a linear combination of the original eigenvectors,

AON = Or`_r` (4.6)

It is this equation which requires the use of as many of the eigenvectors as possible

to be retained in the finite element solution. The higher order modes, even though

they might not be accurate, create a sufficient basis for representing the eigenvalue

perturbations.

An analogous formulation can be developed for the modified system. The dynam-

ics, orthogonality conditions, and perturbation equations for the modified system

are

---_IM_MAM + I(M_M = 0 (4.7)

'_AIMC_M : I

T
_MKMOM = A M (4.8)
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/_rM -- MM + A MM

/(_ = K_ + AK_

3._ = A_+AA_

_ = _ + A_ (4.9)

A(bM = _M_M (4.10)

where MM C ]RnM×'M, KM C _nM×nM, AM E _nM ×nM, and _M C _M ×,_M Note the

assumption still holds that the eigenvalues and eigenvector perturbations are only

relative for the measured parameters, that is tim _< nM eigenvalues and the mode

shapes at the rM _< nM degrees of freedom.

Figure 4.1 gives the strategy for the uncertainty localization and projection pro-

cess for a general system. Given a finite element model and data sets for the nominal

system, an uncertainty model is developed, as shown in the two top blocks. This

uncertainty model is in the form of mean and covariance uncertainties of the eigen-

values and eigenvectors between the model and hardware, as presented in Chapter

2. Once these uncertainties have been identified, they are localized to specific phys-

ical degrees of freedom of the finite element model, in the form of mean error and

variance uncertainties of the physical mass and stiffness matrices. A mapping is then

created between the degrees of freedom of the nominal and modified systems. This

mapping is used to map the mass and stiffness uncertainties of the nominal system

into the modified system. The modified finite element model is then used to project

the mapped mass and stiffness uncertainties, creating an uncertainty model for the

modified system in the form of mean and covariance uncertainties of the eigenvalues

.and eigenvectors. This is shown in the bottom two blocks of Figure 4.1.

One of the most important aspects in the development of these methods is that the

nominal uncertainty model (and subsequent uncertainty localization and projection),

is based on incomplete information: the number of frequencies (eigenvalues) that are

measured (fi_) is less than (or equal to) the total number of modes in the system,

or fin <__nN; the number of distinct actuators and sensors (mode shapes) that are
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Nominal

Modified

Model

AN, ¢I'N ], Uncertainty ModelMN, KN AAN, A_N

Hardware

Uncertainty Localization(AMs, AKN)

Mapping of DOF(AMM, AKM)

AM, _MMM, KM Projection .[ /_kM, _)M ]AAM, A_M

Figure 4.1: Uncertainty model development problem.

measured (rN) is less (or equal to) the number of original deg_rees of freedom, or

rN _< nN. This constraint ensures the methods developed are the most practical.

With the groundwork of the uncertainty localization and projection problems laid

out as in Figure 4.1, two methods are introduced. The first is a matrix method which

manipulates the perturbed matrices introduced in this section to give mean error

and variance uncertainties for the modified system in terms of the mean error and

variance uncertainties for the nominal system. The second method is a sensitivity

method where a specific structure is given to the mass and stiffness error matrices in

the form of macroelements and scaling factors.

4.2 Matrix Method

The first method presented that localizes nominal uncertainties to specific degrees of

freedom and projects them into a modified environment is called the matrix method,

and was used in the design of controllers for the MACE flight. This method is

also detailed in Ref. 48. The matrix method attempts to find the mean error and

variance uncertainties for the modified system by directly manipulating the matrix

perturbations given in the previous section. Although similar in name to other matrix

type localization methods [16, 15], this method finds a closed form solution for both

mass and stiffness errors based on the given measurements.
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4.2.1 Uncertainty Localization

The first step in developing the matrix method is uncertainty localization. The or-

thogonality conditions for true dynamics of the nominal hardware are written as

_//tT/s_N = I

(4.11)

Enforcing these conditions, and substituting the perturbed dynamics of Equations 4.5

and 4.6 into Equation 4.11 and ignoring higher order terms, yields

'I'TAK. <I'N AA. AN _I/N T= - - _P_AN (4.12)

The known errors AA_, qJ_ can then be translated into physical mass and stiffness

errors by employing a pseudoinverse,

aM. =

AK. = [aA.- a.¢.- CAN]

(4.13)

(4.14)

where (.)+ refers to a pseudoinverse. A pseudoinverse is employed as a result of

the above equations being underdetermined, or the measured modes and degrees of

freedom are less than (or equal to) that of the total system, fin _< nN and rN _< nN.

Therefore, although the optimization problem has been solved correctly, the solution

that is found may not be physically realizable.

Because the errors are now in physical mass and stiffness form, they correspond to

particular degrees of freedom. These physical errors of the nominal system can then

be mapped to a modified system. For instance, suppose there is a truss structure

with a plate at one end, and there is a mass error of 5% corresponding to this degree

of freedom. If the same plate is also in the modified structure, the mass error of that

degree of freedom in the modified structure is also 5%. Under this assumption, the

mapping of degrees of freedom is denoted TM., or

rim = TM.r/N (4.15)
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The physicalmassand stiffnesserrorsof the modifiedsystemcan then bewritten

in terms of the nominal massand stiffnesserrors

AMM = TMNAM_,T_ T

AKM = TMNAK_T_ T (4.16)

This assumes, however, that the mapping of degrees of freedom between the two

systems can separate the nominal and modified errors. For a few cases, most notably

the modeling of gravity effects in a flexible system, this cannot be done. The modeling

of gravity stiffening and initial deformations are modeled as a superpose onto the finite

element stiffness matrix. The matrix method, therefore, cannot differentiate between

errors in modeling the physical test article, and errors in modeling the gravity effects.

4.2.2 Uncertainty Projection

Once the physical errors of the modified system are known, the eigenvalue and eigen-

vector errors can be found by manipulating the modified system. The linear structural

eigenvalue problem for the true dynamics of the modified hardware can be written as

--MMCMiAMi -_ KMOMi _- 0 (4.17)

Substituting Equations 4.9-4.10 into Equation 4.7, and premultiplying by ¢T i and

cTj, yields

AAM, = cT i [AKM - AMiAMM] ¢,, (4.18)

[AM, -- AMj] CMji = cTj [AKM - AMjAMM] ¢,i (4.19)

Using Kronecker algebra [64], the eigenvalue errors and the matrix • that defines

the eigenvector errors of the modified system are found to be linear in terms of known

vec {AN/}]
AM,= c, LvecA_N J

[vec(ANd]
cMji= Lvec/, NJ

nominal errors, AAs, A_N.

(4.20)
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where

Dji

(AiT @AjT Bj -4- 2_jT j_j@AiTudp).(_1 ]

i#j

[ o (Ar®Ar)( I + g_)_;1 ] i = j

Ai ((I)l_) + T A(I )T Ucvec A(I) N-_ TMNCMi, vec =

(4.21)

Bi -= -An - )_MiI, vec AA_ = U_vec {A_i}

The unknown eigenvalue and eigenvector errors for the modified system are then

shown to be linear in terms of the known errors from the nominal system. Defining

Fi = [< _N/)i ] (4.22)

the modified errors are

A,'_Mi [vec {,'_Ni}]= F_ (4.23)
ACMi kvec A_N J

Because of the linearity, the expected mean and eovariance can easily be calculated.

AAMi [vec {aNi}"E = F_E (4.24)

ACM i [ vee AON

Cov AAM_ = F, Cov /vec F: (4.25)

ACM i Lvec A_

where E[.] and Cov[.] denote the expectation and covariance operators respectively.

The mean errors and bounds for the relevant parameters of the modified system,

i.e. the frequencies and eigenvectors, can then computed from Equations 4.24 and 4.25.

The eigenvector mean errors and bounds are computed directly,

/x¢_,j = E [/x¢_d

A'_Mij = 3- ?var [ACMijl (4.26)

where var[.] denotes the variance operator, which is the diagonal of the covariance

matrix in Equation 4.25. The mean errors for the eigenvalues can be found similarly.
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However,more meaningfuluncertainty bounds for control designare boundson fre-

quenciesrather than eigenvaluesof the modified system. Assuming the eigenvalue

error is small comparedto the eigenvalue,the frequencyperturbation canbe written

A)_Mi
A/M, -- (4.27)

2fMi

using a first order Taylor expansion.

Using this equation, the mean errors and bounds for each sample frequency can be

found.

E[AA.d
AfMi -- 2fM

3" x/var [A/_Mi]
AfM i =

2fMi
(4.28)

4.3 Sensitivity Method

The second method used for uncertainty localization and projection is called the sen-

sitivity method. The use of first order sensitivities for model updating can be traced

back three decades [31,23]. The method described here, however, develops a complete

uncertainty localization strategy that not only uses the first order sensitivities as de-

scribed in Refs. 31,23, but also addresses problems such as systematically choosing

the update parameters, and handling an insufficient number of modal measurements.

In addition, the technique is adapted for the localization of variance uncertainties, as

well as mean errors. The localized mean error and variance uncertainties using the

sensitivity method are also projected to find the modified uncertainty model.

4.3.1 Uncertainty Localization

The linear structural eigenvalue problem for thc true dynamics of the nominal hard-

ware can be written as

--_IN(_Ni_N_, "_ /_N(_Ni = 0 (4.29)
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Substituting Equations4.5-4.6into Equation 4.1, and premultiplying by cTi and cTj,

yields

[' Ni-- ) sj] )sji = cNTj[AKN-- ;_,jAMNI ¢_,_

(4.30)

(4.31)

Instead of manipulating the matrices as was done for the matrix method, a par-

ticular form is supplied for the mass and stiffness error matrices. These perturbations

are written as

kN

j=l

mN

(4.32)

j=l

where Kj and M s are termed macroelements, aj and /33. are macroelemental scale

factors which scale the relative size of each macroelement, and k_ and m_, refer to the

total number of macroelements for the nominal system. These macroelements can be

in the form of a finite element, a part of an element, or groups of elements. A more

detailed discussion of these macroelements is given subsequently.

Substituting Equations 4.32 into Equations 4.30-4.31 and rearranging, the follow-

ing form results for the eigenvalue and eigenvector errors.

k N rnN

A)_Ni= E [ CNT KjCNi] OlJ--/_Ni E [ CNT MjCm] _J

j=l

j=l Lk_

j=l

(_J - E

j=l L k¢i

]
Nk _Nk__Ni (])Nk- 2

d

(4.33)

(4.34)

The above equations are linear in terms of the macroelemental scale factors aj and

/_j. Therefore, this equation can then be written in the form

A)_Ni

SNi

_N
(4.35)
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where

SNill

Suil2

SNi21

SN/22

CNiKldPsi ... dpmKkNCN i

-)_m Cui M1Cm .... ,XNi_ui NkN _i

nN cTiKkY, Cuk .Z.¢_iKlCukcNk "'" E ,XNk--_,m _uk

k=l k=l

k#i k#i

nN T M ]

n_ I _)_iMlONk .A *_iMI*Ni CNi .... E "_Nkf_TiMmM(_Nk CNk-- _Ni mM_Ni
-- ANk )_Nk_AN i /J)Nk- "2 ANk--ANi 2 CNi ]k=l k=l

k¢i k#i

A set of linear equations can be developed for all measured errors, giving

= Su
Ol N

flu
(4.36)

The matrix SN is a called a sensitivity matrix. Note that there are flu _< nu measured

eigenvalues and ru < nu measurement locations.

In order to calculate the macroelemental scale factors, and subsequently the mass

and stiffness errors, a pseudoinverse is again employed. If the choice of macroelements

and scale factors is made such that their number is less than or equal to the number

of measured errors, or

kN + mu _< (rN + 1)'fin (4.37)

then Equation 4.36 is overdetermined, rather than underdetermined as it was for the

matrix method (Equations 4.13 and 4.14). Therefore, the solution that results from

using this pseudoinverse is physically realizable, in addition to being mathematically

optimal.

A weighted pseudoinverse is then used to calculate the macroelemental scale fac-

tors

O/N

= [WNSu]÷WN (4.38)

where the [.]+ refers to the pseudoinverse and WN is a diagonal weighting matrix

CANi }

Wu = diag II_u, II
CcNi

llCN ll
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and %) are confidencefactors that are chosenis a somewhat ad hoc manner. For

instance, eigenvalue uncertainties are usually easier to calculate than mode shape

uncertainties, and are not as prone to measurement errors. Therefore, the confidence

factors are chosen to be c),Ni = 1.0 and c¢_i = 0.1 reflecting the higher confidence in

the eigenvalue measurements.

Because the macroelemental scale factors are linear in terms of the known errors,

the expected value and covariance can easily be calculated

E

_N
= E (4.39)

Cov = Coy [[WNSN]+W_] T (4.40)

4.3.2 Uncertainty Projection

Once in the physical domain, the mass and stiffness errors can be mapped from the

nominal to the modified system. Using the general mapping of degrees of freedom

between the two systems given in Equation 4.15, the mass and stiffness errors for the

modified system are given by

kM

A :M=  yTM KjT£
j=l

rnM

AMM=  gyTM MyTL (4.41)

j=l

Because the sensitivity method defines possible modeling error sources in the original

derivation of the method in the form of macroelements, it can handle the superpo-

sition of errors between the nominal and modified systems. By choosing different

macroelements Ky and My, errors that superpose such as errors in the modeling of

the test article and errors in the modeling of gravity effects, the physically correct

errors can be identified. This ability is an improvement over the more constraining

matrix method (Equation 4.16).

The number of macroelements for the modified system is generally less that tim

number for the nominal system, or kM _< kN and mM <_ m_. The macroelemental
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scalefactors (and thereforemacroelements)for the modifiedsystemcan be found by

ordering the nominal scalefactors such that

[a_] =
Ol M

_M
(4.42)

By selecting only those macroelements (and scale factors) that affect the modified sys-

tem and mapping those macroelements, the mass and stiffness errors for the modified

system can be found using Equation 4.41.

The next step is to find the eigenvalue and eigenvector uncertainties in terms of

the mass an.d stiffness uncertainties for the modified system. An analogous derivation

of the sensitivity equation, given in Equation 4.33-4.36 for the nominal system, can

be made for the modified system using the macroelements in Equation 4.41. This

again gives a set of linear equations between the unknown eigenvalue and eigenvector

errors and calculated scale factors.

vec {A_i}

vec A¢_i
=_

Ol M

9M
(4.43)

where SM is the sensitivity matrix. The expected mean and covariance are then

E ] = SME

Cov

calculated quite easily.

I vec {AAMi}vec A¢_i

vec {A)_Mi}
vec ACM i

= S_Cov

aM

_M

aM

_M

(4.44)

S T (4.45)

The mean and covariance of the eigenvalues and eigenvectors can then be used to

create the modified uncertainty model using Equations 4.26-4.28.

4.3.3 Macroelements

Macroelements are user defined matrices which should span the space of all possible

modeling errors. Therefore, there are many types of macroelements from which to
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Figure 4.2: Three distinct macroelements.

choose when attempting the sensitivity method. Factors which influence the choices

include: the number and location of the measurements; the number and type of

modes; the types of uncertainties that may exist in the model; and the size of the

finite element model. The factor which influences the choice of macroelements the
/

most, however, is the number of unknown scale factors (macroelements) must be less

than or equal to the number of measured errors, as shown in Equation 4.37.

The number of measured errors places a fundamental limit on the number of

macroelements. Because of this, three distinct types of macroelements are defined:

sub-elements, elements, and groups of elements. Sub-element based macroelements

are those errors which lie within a particular finite element, as shown in Table 2.4.

Element based macroelements are those errors which lie in different finite elements.

And finally, groups of elements based macroelements are those errors which lie in

different areas of the structure, as defined by different groups of elements. These

different types of macroelements are shown in Figure 4.2. In this section, each type of

macroelement is fully described, while in the following section, a strategy for choosing

the required type of macroelements for uncertainty localization is presented.

The first choice of macroelements is based on errors within the finite element, or at

the sub-element level. In Chapter 2, a thorough examination of finite element model

uncertainties is presented. Physical uncertainties such as material and geometric

properties are easily represented as errors within the element, as given in Table 2.4.

Errors in internal couplings such as joints/attachments and actuator/sensor dynamics
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that arenot in the finite elementmodelarelocalizedusingthe identification procedure

suchasthe DEKF. Gravity effectssuchasgeometricstiffeningandinitial deformations

are additions to the finite elementstiffnessmatrix. Therefore,macroelementscanbe

developedusing Equation 2,5 and Equations 2.7 and 2.8. The final two categories

of uncertainties are testing and nonlinearities. Becausetheseuncertaintiescannot be

expressedusinglinear macroelements,it is assumedthat they canmanifest themselves

asmeanerror and varianceuncertaintiesin the macroelementsdevelopedpreviously.

This approach is a bit ad hoc, and a more thorough examination of these effects

should be undertaken.

The second type of macroelement is at the element level. A single macroelement

can be formed which is the summation of all of the sub-element errors corresponding

to that particular finite element. This single macroelement can then be used to

localize errors to that element (and other elements), even if the sub-element errors

are distinct.

The final type of macroelement is grouping finite element errors themselves. When

creating a finite element model, a finer and finer mesh of elements may be needed

to capture the dynamics of the structure. As a result, all of the degrees of freedom

are usually not experimentally measured. It is therefore occasionally useful to group

finite element errors together into one macroelement. The easiest manner in which to

group element errors is using insights from the finite element modeling process. For

instance, if an element is split into two equivalent elements to obtain a finer mesh,

errors in these two finite elements can be grouped together into one macroelement for

the localization process.

In addition to using modeling insight to group element errors into macroelements,

it is also useful to obtain a grouping procedure which is a function of the problem

posed. For instance, if there is a section of the structure that does not have sensors,

it may be difficult to localize errors to specific degrees of freedom. Taking a term

from the control systems community, the element errors may be unobservable. Math-

ematically, these unobservabte element errors manifest themselves as singularities in

the sensitivity matrix.
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In order to examinethis problem, the singularvaluedecompositionof the weighted

sensitivity matrix of the nominal system is written as

wNss = usr  y [ (4.46)

=

where Us and Vs are left and right unitary matrices, and E_ is a matrix of singular

values. If there are element errors that are unobservable, they manifest themselves as

singularities, or small singular values in the decomposition. For instance, if a singular

value is 0, this is a reduction in the rank of the sensitivity matrix. For those singular

values that are small, the corresponding column of the VN matrix yields a null vector.

Therefore, the unitary matrix V_ gives a guide to grouping elements. The singular

value decomposition of the following matrix shows a simple example of this procedure.

=U

12.38 0 0

0 0.81 0

0 0 0.00

0 0 0

112

214

316

418

0.44 -0.06 0.88

0.14 0.98 0.00

0.88 -0.13 -0.44

(4.47)

Notice that the original matrix has two dependent columns, i.e. the third column

is two times the first. The third entry in the singular value matrix is zero, and the

third column of the unitary matrix Vs shows the first and third columns are related

by a factor of two. This method can be used to group elements as needed, thereby

reducing the number of columns of the sensitivity matrix (which is equal to the

number of macroelements) to a number which is less than the number of measured

errors. This ensures the use of an overdetermined pseudoinverse, and a physically

realizable structure of the solution.

By describing the unobservable element modeling errors in a mathematical man-

ner, a different and interesting application of this method becomes apparent. By

examining the rank of the sensitivity matrix, the physical locations of the sensors can

be chosen such that modeling errors are more observable. This is an attempt to use

the sensitivity method essentially in reverse, in order to create a better experimental

setup. This interesting application is left for future work.
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4.4 Practical Algorithm

Too many times have there been methods developed which work quite well for simple

problems, but the practical application of such methods is severely lacking. This is

exemplified in the error localization literature where most of the algorithms assume

the measurement of (or expansion to) all degrees of freedom. Although interesting,

practical application of these methods is not realistic. This section describes the appli-

cation of uncertainty localization and projection methods to a practical experiment,

specifically addressing issues such as the type of uncertainty localization technique,

the choices of macroelements, the pseudoinverse method, and effects of large modeling

errors.

The primary item for a practical uncertainty localization and projection strategy

is the choice of technique: matrix method versus sensitivity method. It has become

obvious in the derivation of both methods that the sensitivity method is the most

practical. This is because the pseudoinverse employed in the sensitivity method is

on an overdetermined system, thus yielding physically realizable solutions. In the

matrix method, the pseudoinverse is on an underdetermined system, thus yielding

only a mathematical result which may not be physically realizable. Secondly, the

choice of macroelements allows the user to define errors which may superpose each

other. This is especially useful when gravity effects are prevalent, because they are

modeled as an superposition of the finite element model stiffness matrix.

The next step in creating a practical tool is the choice of macroelements. This

choice is heavily influenced by the number of errors measured. The macroelements

must be selected such that the number of macroelements is larger than the number of

known uncertainties. (i.e. to ensure an overdetermined pseudoinverse). The method

proposed is a three step layered approach, as shown in Figure 4.3.

The uncertainties are first localized to particular areas of the structure, using the

largest macroelements based on groups of elements. Once localized using the sen-

sitivity method, the number of macroelements are reduced by throwing out those

macroelements which do not contain large modeling errors. This is shown in Fig-
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Figure 4.3: Three step procedure for uncertainty localization using different

types of macroelements.

ure 4.3 by throwing out macroelement 2 in step 1. The remaining macroelements

are then divided to create element based macroelements. This is shown in Figure 4.3

by dividing the remaining group of elements based macroelement 1 into two element

based macroelements. A similar procedure is used in step 2 of localizing the macroele-

ments, and throwing out those macroelements which do not contain large modeling

errors. And finally step 3 is performed to localize errors within each of the finite

elements, such as an error in modeling of the modulus of elasticity, density, or gravity

effects.

In order to achieve the objective of finding the most accurate and physical mass

and stiffness errors, given errors in the eigenvalues and eigenvectors, the localization

must be performed at the sub-element level. The three step procedure proposed above,

however, acknowledges the practical case of a small number of measurements. The

discussion of macroelements at the sub-element, element, and groups of elements levels

is given in the previous section. A localization is performed at each step and must

use an overdetermined set of equations in the pseudoinverse. Note that depending

on the number of measured errors, the practical strategy could start with element or

sub-element based macroelements, rather than groups of elements.

The reduction in macroelements can be accomplished by examining the weighted

pseudoinverse, which is found by solving the weighted least squares problem. Defining
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an error using Equation 4.36

eN=E

A weighted quadratic cost can then be defined as

OL N

(4.48)

j T 2=eNW_eN (4.49)

where Ws is the weighting matrix defined in Equation 4.38. The solution to this

weighted quadratic minimization is the weighted pseudoinverse.

A procedure is then developed for the reduction in the number of macroelements.

First, the pseudoinverse is calculated, and the cost of the weighted least squares prob-

lem in Equation 4.49 is evaluated. Then, one macroelement is eliminated at a time,

and the cost is evaluated again. The macroelement which reduces the cost the least

is then eliminated. This procedure is repeated until there is only one macroelement

left. Figure 4.4 shows a sample plot of the normalized cost at each iteration of this

procedure.

The elimination procedure also gives a rough ordering of the importance of the

macroelements to the pseudoinverse, and therefore their importance to the uncer-

tainty localization. The usual cut off point for reducing the number of macroelements

is the point which the cost begins to increase. This is shown to be at macroelement 6

in Figure 4.4. This may have to be changed, however, if there are a lot of uncertainties.

Note that a distinct, but similar procedure can be developed for the reduction of

macroelements when localizing variance uncertainties. Using Equation 4.36, a matrix

C N _ Coy

error can be defined

- S_Cov
OIN T

S_ (4.50)

A weighted scalar quadratic cost that is the two norm of the matrix error can then

be defined for the reduction of macroelements.

J = IIH_I12 (4.51)
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Figure 4.4: Example of the reduction of macroelements using the weighted

least squares cost

In this work, the pseudoinverse used is based on the singular value decomposition.

Given the weighted sensitivity matrix, a singular value decomposition is performed.

= (4.52)

where U_ and VN are left and right unitary matrices, and EN is a matrix of singular

values. The singular value based pseudoinverse is then

kN_N 1 H[WsSN] + = --v,u i for ai > e (4.53)
i=1 O'i

The value of e is chosen to reflect the conditioning of the sensitivity matrix.

The last aspect of the practical uncertainty localization and projection strategy

is the effects of using a first order linear perturbation to the structural eigenvalue

problem, which is inherently nonlinear. If the perturbations are small, the strategy

works quite well. However, when they become large, the assumptions made during

the derivation become invalid. One way to eliminate these problems is to set up an
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iterative process. In this process,the mean errors are localized using the original

finite element model of the nominal system. Then, a new system is formed with

the original finite element model and the localized mass and stiffness errors. An

eigenvalueproblem is then performedon this new system. The new system is then

taken as the finite elementmodel, and another iterations of meanerror localization

is performed. Note that this is similar to a finite elementmodel update strategy.

If the massand stiffnesserrorsof the nominal systemare largeenoughto require

an iterative procedureusingan eigensolutionat eachstep, the samemust be donefor

the uncertainty projection. Therefore,Equation 4.44is not usedto find the projected

meanerrors. An eigensolutionis developedusing the modified finite elementmodel,

and the mappedmassand stiffnesserrors.

Although this techniqueworksquite well with the meanerrors, the varianceun-

certaintiesor boundsaremore difficult. Instead of an eigenvalueproblem, a solution

must be found for a nonlinear statistics problem, which is quite difficult. The vari-

anceuncertaintiesare thereforefound usingthe linear solutionsdevelopedpreviously

(Equations4.40and Equation 4.45).

Figure 4.5 showsa summaryof the practical uncertainty localization and projec-

tion strategy. Note that the convergenceof the iterative procedurecanbe checkedby

examining the meanerrors and the convergingfinite elementmodel.

4.5 Small Order Example

An example was sought for this thesis which had the following properties: simple,

easy to understand, easy to change parameters, yet complicated enough such that

the bending and axial modes were important, and there is a system change that is

analogous to the 1-g to 0-g change in environment which is one of the central ideas

of this work.. Figure 4.6 shows the small order example that is used to analyze the

techniques developed and to add insight to the uncertainty localization and projection

problems.

The small order example is a planar system with 4 struts and three collars. Each
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Figure 4.5: Flowchart for the practical implementation of the uncertainty

localization and projection methods.

strut is a circular tube, and is divided into 2 elements, for a total of 8 beam elements.

There are 8 nodal points with 3 degrees of freedom for each (vertical, horizontal, and

rotational) giving 24 degrees of freedom. Table 4.1 summarizes the beam element

properties. The mass and stiffness matrices for these elements are standard displace-

ment based two-dimensional beam elements [65]. The mass matrix is chosen to be in

consistent form.

The small order example is an "L" shape in order to couple the vertical and

horizontal displacements of the elements. A straight cantilever beam dccouples the
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Figure 4.6: Small order example: cantilevered "L" beam

vertical and horizontal displacements. There are also three nodes that contain con-

centrated masses and inertias. A description of the nodal properties is also given in

Table 4.1.

This small order example is also used to verify the projection techniques proposed

in this thesis. The change that is analogous to that of the 1-g to 0-g environment

change is a cantilevered configuration to free-free configuration. The free-free config-

uration has 9 nodal points giving 27 degrees of freedom. Table 4.2 gives a summary of

the first seven frequencies of each system. The damping is assumed to be proportional

and 1% for all modes in both the cantilevered and free-free systems.

In order to validate the methods presented, and to gain insights into the practical

situations in which the methods might perform well or poorly, three distinct cases

Property

Modulus of Elasticity (E)

Density (p)

Outer Radius (r)

Thickness (t)

Length (L)

Nodal Mass (m)

Nodal Inertia (I)

Value

2.7 × 109 N/m 2

2021 kg/m 3

0.0128 m

0.0032 m

0.125 m

O.6 kg

0.004 m 4

Table 4.1: Beam sectional and nodal properties for the small order example
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are presentedfor the small order example. The first is when completemeasurement

of all degreesof freedomand frequenciesareavailable. This verifiesthat the methods

presentedwork for the best case.The secondcaseis a more realistic scenariowhere

there are 4 frequenciesand 4 degreesof freedom measuredthat are evenly spaced

within the system. Theseare the rotational degreesof freedomul, u3, us, and uT in

Figure 4.6. The final case is when there are 4 frequencies and 4 degrees of freedom

measured, but the degrees of freedom are concentrated in one area, while errors

exist in another area. The degrees of freedom are on the left side of the example,

i.e. Ul, u2, u3, and u4 in Figure 4.6, and the uncertainties are scattered throughout,

included the right side. A summary of these test cases is given in Table 4.3.

In addition to the topology of the test cases, Table 4.3 also shows the uncertain-

ties (both deterministic and stochastic) introduced into the system. The errors are

presented in the form of a normal variable with mean and standard deviation errors

in percentage, or (.) = N(A(.), aA(.)). The sample problem is examined by sampling

the stochastic uncertainties, introducing all uncertainties into the model, and simu-

lating a large number of cases in a Monte Carlo type simulation. Case 1 examines

mean and variance uncertainties separately, while Cases 2 and 3 examine a variety of

uncertainties throughout the structure.

Table 4.2:

Cantilever (Hz) Free-Free (Hz)

3.1 0.0

18.2 0.0

43.1 0.0

72.8 22.3

97.3 44.8

120.2 83.3

131.2 110.3

Frequencies for the cantilevered and free-free configurations of the

small order example
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Uncertainties Measurements

Case1A E2 = N(5%, 0) All frequencies

p2 = N(-5%, 0) All DOF

Case 1B E2 = N(0, 2%) All frequencies

P2 ---- g(0,-2%) All DOF

Case 2 E2 = N(5%, 2%)

L4 = N(-5%, 0)

r6 = N(-5%, 2%)

m67 = N(3%, 0)

Case 3 E2

L4

T6

= N(5%, 2%)

= N(-5%, 0)

= N(-5%, 2%)

m67 = N(3%, 0)

Table 4.3: Test eases for the small order example.

4 frequencies

Ul, //'2, U'3,724

4.5.1 Case 1: Complete Measurements

The first test case examined is the ability of both methods to localize both mean

error and variance errors in the nominal system, and project them into the modified

system using complete measurements, i.e. measuring all of the frequencies and mode

shapes. This gives 24 + 24 × 24 = 600 pieces of information. Case 1A, as shown in

Table 4.3, examines the localization and projection of mean error uncertainties only.

The uncertainties in this case are a 5% mean error in the modulus of elasticity of

element 2, and a -5% mean error in the density of element 2. This case is particularly

interesting both mass and stiffness mean errors are introduced into the same finite

element, adding more complexity to the localization process.

Figure 4.7 shows a summary of the mean error localization and projection for

Case 1A using the matrix method. Figure 4.7(a) shows three dimensional plots of

the actual mass and stiffness errors and localized mean errors found using the matrix

method, as a function of the degrees of freedom. Notice the agreement is practi-
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cally identical. Figure 4.7(b), showsthe modified or free-freefinite elementmodel

freuencies,simulated frequencies(with the uncertainties introduced), and predicted

frequenciesusing the model and projected mean error. Note that all points on the

plot are normalized by the correspondingfree-freefinite element model frequency.

The prediction of the mean errors in frequencyusing the matrix method works very

well for this case.

The sensitivity method performed for this caseutilizes a two step procedure:

localize to elementsand reducethe number of elements; localize to sub-elements.

Although the number of measurederrors is large enough such that this two step

procedureis not necessary,it is detailed in this manner to demonstrate the general

sensitivity technique. It is also the most commonly usedstrategy. Note that a one

step strategy would not haveimproved the results.

The first step of the two-stepsensitivity method involves localizing to particular

finite elements. For this step, each mass (8) and stiffness (8) finite element and

eachconcentratedmass/inertia (3) are used,comprisinga total of 19macroelements.

Figure 4.8(a) showsa plot of the cost for the pseudoinversein the sensitivity method,

as eachmacroelementis eliminated. Notice that if 8 macroelementsare used, the

pseudoinverse,and thereforc the localization method, performsessentiallyaswell as

if 19macroelementsareused;and there is only a slight differencein cost whenusing4

macroelements.Alsonotice that the elimination procedureordersthe macroelements.

This is seenin Figure 4.8(a) as weightedleast squarescost is substantially reduced

usingthe first two macroelements.Becausethere areonly two meanerrors, the rough

ordering of macroelementsplacesthe two macroelementsthat are the modelingerror

sourcesfirst.

The decisionis made to use the first 8 macroelements.These8 macroelements

are either mass,stiffness,or nodal masselements. The retained massand stiffness

macroelementsare split into three sub-elementsfor use in the next step of the lo-

calization procedure. Table 2.4 showsthe many variations of sub-elementsthat can

be used. For this step of the localization, only three are relavent: AE, Ap, and

_L. The perturbation At can be represented with the macroeIements chosen, and

92



x 105
Actual AK N Localized AK N

x 105

5

0 0

5

0 0

x 10 -3
Actual AM N Localized AM N

X 10 -3

1

4O

0 0

1

0 0

(a) Mass and stiffness mean error matrices.

110.3

rr

t3
e.

83.3

I

48.8

X

0

X

0

X

0 _(

X

22.3 0 x ' - J-- -
i 1.001 1.002

o Free-free-FEM

x Simulated free-free mean

Projected free-free mean

• I I I

1.003 1.004 1.005

Normalized to free-free FEM frequency

1.006

(b) Frequency results for cantilever to free-free projection of mean errors.

Figure 4.7: Matrix method for Case 1A using complete measurements.
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the perturbation Au is not applicable for this two-dimensional problem. In addition,

the Ar perturbation is quite similar to a combination of AE and Ap, except for the

extensional degree of freedom. Because the measured degrees of freedom and modes

are rotational, the Ar perturbation is almost indistiguishable from the AE and Ap

errors.

By examining retained mass and stiffness (and concentrated mass/inertia) element

based macroelements from step one, and the possible sub-elements described above,

the macroelements of step two of the sensitivity method are then created. A total

of 22 macroelements are then used for this step of the process. Figure 4.8(b) shows

the weighted least squares cost for this step of the localization strategy as a function

of the given macroelements. Notice the first two elements again substantially reduce

the cost as a result of ordering the correct two macroelements first.

Figure 4.9 shows a summary of the uncertainty localization and projection for

Case 1A using the two step sensitivity method. Figure 4.9(a) shows the actual mass

and stiffness errors to be predicted correctly, as they were for the matrix method.

Figure 4.9(b) shows the frequency results for the modified, or free-free system, which

again shows good agreement. The sensitivity method described here uses only one

iteration of the general strategy shown in Figure 4.5. If the mean error localization

had not performed adequately, additional iterations could have been performed to

improve the results. An example of when and how the iteration procedure of the

sensitivity method is used is given in a subsequent example.

Case 1B is similar to the previous case, however, variance uncertainties are lo-

calized and projected instead of mean errors. Examining variance uncertainties is

more difficult than the case with mean errors because localized mass and stiffness

uncertainties cannot be described pictorially. For the mean error case, once the

macroelemental scale factors are found, and mass and stiffness error matrices can be

calculated and compared to the actual error matrices. For the variance uncertainty

case, however, this cannot be done. One can only examine the macroclemental scale

factors themselves, which are in the form of a covariance matrix. The easiest check

to ensure the validity of the localization and projection of variance uncertainties is
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Figure 4.8: Weighted least squares cost showing the possible elimination of
macroelements.
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Figure 4.9: Sensitivity method for Case 1A using complete measurements.
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to run many simulated caseswhile sampling the uncertainties, for both the nominal

and modified systems.Then the varianceuncertaintiesof the nominal systemcanbe

calculatedand projected into the modifiedenvironmentwherethey can becompared

to the simulated resultsof the modified system. This is the format for CaselB.

As shownin Table 4.3, Case1Busesa 2%standarddeviation in both the modulus

of elasticity and density of element2, and there is no meanerror. Therefore,in most

casesthe random error in the modulus of elasticity and density of element 2 is less

than 6%. There were 100 casessimulated (with the two variables being random),

and the frequenciesand modes shapesare calculated for each. Figure 4.10 shows

the frequencyresults of the localization of the varianceuncertainties and projection

usingboth the matrix and sensitivity methodsfor CaselB. The simulatedboundsare

calculatedfrom the 100simulatedcases,and the projectedboundsare thosebounds

that are predicted using the uncertainty localization and projection methods. Both

methodsagain work quite well in predicting the bounds for the casewhen all of the

degreesof freedomand frequenciesare measured.

The localization of varianceuncertainties using the sensitivity method also used

a two-stepprocedure,alongwith the samemacroelementsdescrbedpreviously. Note

that the matrix error and cost defined in Equations 4.50-4.51.

4.5.2 Case 2: Partial Measurements

Case1 verified that the uncertainty localization and projection methods developed

in this thesiswork well usingmeasurementof all degreesof freedomand frequencies.

One of the primary objectivesof this work, however, is to developmethods that also

work well for practical problems. Case 2 applies these methods to a more-practical

case.

Case 2, as shown in Table 4.3, contains only partial measurement of the modal

parameters of the system. There are 4 modes measured, and 4 degrees of freedom,

giving 4 + 4 x 4 = 20 total measurements. The 4 degrees of freedom are rotational

and are evenly spaced along the beam. These are shown as ul,u3, us, and u7 in

Figure 4.6. There are uncertainties, both deterministic and stochastic, in four areas
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of the structure, asshownin Table 4.3. Thesefour areasare spreadthroughout the

structure: the modulus of element 2, the length of element 4, the outer radius of

element6, and the massand inertia of the node (collar) betweenelements6 and 7.

For Case2, 10simulated casesare run for both the nominal and modified systems,

with the mean error and varianceuncertainties in measuredfrequenciesand mode

shapescalculated for each. The nominal mean error and varianceuncertainties are

then localized and projected into the modified system to predict the corresponding

uncertainty model. These predictions can then be checkedby comparing the 10

simulatedcasesof the modified system.

Figure 4.11showsthe localizedand actual massand stiffnesserror matrices us-

ing the matrix method. The localized massand stiffnesserror matrices do not re-

semblethe actual error matrices. The matrix method supplies massand stiffness

error matrices that are not physical, resulting from the useof a pseudoinverseon an

overdeterminedsystemin the derivation. The results still solvethe given optimiza-

tion problem,however.Predictably, whentheseerror matricesare projected into the

modified,or free-freesystem,the predicted resultsareextremely poor, suchthat they

arenot presentedhere.

Figure 4.12showsthe resultsof the sensitivity method for Case2. The two-step

localization proceduresimilar to that usedpreviously is employed,i.e. the sameele-

ment and sub-elementbasedmacroelements.Figure 4.12(a)showsthe predictedand

actual massand stiffnessmean error matrices. The agreementusing the sensitivity

method is excellent. Figure 4.12(b)showsthe frequencyresultsof projecting of both

the meanerror and varianceuncertaintiesinto the modifiedsystemto predict the free-

free frequenciesand bounds. Shownare the FEM frequencies,projected frequency

and bound for four samplefrequencies,and 10 simulated casesof for the free-free

system. The sensitivity method worksquite well in predicting both the meanerrors

and bounds, such that eachof the simulated casesare within the predictions. The

sensitivity method works well becauseboth the modelingerror sourcesare correctly

spannedby chosenmacroelementsandthe pseudoinverseusedis onanoverdetermined

system.
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Figure 4.11: Matrix Method for Case 2 using partial measurements.

4.5.3 Case 3: Partial Measurements

The final case examined uses the same uncertainties as in the previous case, but

the measurements are now on the first four nodes. This is shown in Figure 4.6 as

four rotational degrees of freedom ul, u2, u3, and u4. This implies that a few of the

uncertainties, i.e. r6 in element 6 and m6.7 do not have measured degrees of freedom

near the unmodeled area. This case demonstrates the ability of the methods to

localize errors in areas of the structure that are not completely observable to the

sensor measurements.

For this case, the matrix method produced results that were inconsistent, similar

to those for Case 2. They are therefore not presented here. Figure 4.13 shows the

mass and stiffness mean error matrices, and projection for the sensitivity method.

The localized mass and stiffness mean errors are quite similar to the actual errors,

though they are not identical. The predicted mass error in the m6.7 is larger, while the

predicted stiffness error matrix is smaller compared to the actual mass and stiffness
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Figure 4.12: Sensitivity Method for Case 2 using partial measurements.
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errors. This can also be seenin the projection, shownin Figure 4.13(b). While the

predicted mean errors are quite good, they do not predict the range of all of the

simulated frequencies. For the 22.3 Hz mode, the predicted mean error shifts the

model near the simulated frequencysamples,but there still remainsa residual error

suchthat the predictedmeanerror and bounddoesnot match the simulated free-free

samplesfor any case.

In order to accurately predict both the mean errors and bounds, the iterative

strategy proposedin the developmentof the sensitivity method is implemented. This

general strategy is shownin Figure 4.5. For this case,5 iterations of the two step

uncertainty localization processare implemented. Figure 4.14 plots the updated

cantileveredand projected free-freemean frequencies(--), alongwith the simulated

mean (x) and actual frequencies(o), as a function of iteration. Note each point

is normalized to the actual frequencies.Therefore, the parametersshould converge

to the simulated mean, instead of the actual parameter value. In one iteration, the

sensitivity method works well, but a few of the frequencieshave not convergedto

their respectivesimulatedmeans.After two iterations, however,the method predicts

the simulatedmeanfrequenciesquite well. And after 5 iterations, it worksvery well.

Figure 4.15 showsthe results of this uncertainty localization and projection af-

ter using 5 iterations (Compared to the analogousplots after using 1 iteration in

Figure 4.13). Figure 4.15(a) showsthe massand stiffness mean error matrices are

now localizedquite well. In addition, Figure 4.15(b) showsthe projectedmeanerrors

and bounds for the frequenciesof the free-freesystem now predicted the simulated

samplesaswell. This exampledemonstratesthat the sensitivity method works quite

well on the first iteration as a courseadjustment, but may,on a fewoccasions,needa

few more iterations for fine adjustments. The best manner in which to predict when

multiple iterations areneededis to examineeachnominal meanerror localization. If

the updated systemmatchesthe mean of the nominal data quite well, then another

iteration is not needed.If, however,there arestill small residual errors, a few more

iterations will improveboth the localizederror matricesand projection procedure.
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Chapter 5

Experimental Verification

This chapter is used to experimentally verify the uncertainty localization and pro-

jection methods developed previously. The Middeck Active Control Experiment

(MACE) is used to demonstrate the feasibility of these techniques in an experimental

setting, while also showing their strengths and weaknesses. Two types of experiments

are used to evaluate these methods. The first is using the MACE 1-g system as nom-

inal to predict the modified MACE 0-g uncertainty model. This was the primary

objective of the development of these methods for the MACE flight. The second ex-

periment utilizes a different configuration of the MACE test article. Figure 5.1 shows

two configurations of the MACE test article used during the flight, termed Configu-

ration I and II. The second experiment uses the MACE 0-g Configuration I system

as nominal to predict the modified MACE 0-g Configuration II uncertainty model.

In addition to demonstrating these methods experimentally, these experiments also

give insights into where improvements of the methods can be made.
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Figure 5.1: Two 0-g configurations of the MACE test article.

5.1 MACE Configuration I 1-g to 0-g

The first experiment used to verify the uncertainty localization and projection meth-

ods developed in this work is MACE Configuration I l-g, shown in Figure 2.1, to

Configuration I 0-g, shown in Figure 5.1(a). For MACE, this projection was the

basis for all controllers developed prior to flight. In addition, because of the change

from 1-g to 0-g and the reduction of overall degrees of freedom with the removal
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of the suspensionsystem, this prediction is quite a challengingtask for the methods

developedin this work.

Details of the MACE Configuration I 1-g to 0-g uncertainty localization and

projection are given in Table 5.1. The nominal system is MACE Configuration I in

1-g. The 1-g finite element model for MACE contains n_, = 678 degrees of freedom,

of which 375 modes are retained from Nastran [66]. There are 16 data sets available

for identification, producing rN = 17 measured degrees of freedom (9 XY axes + 8 Z

axis) and fin = 24 measured frequencies (14 XY axes + 10 Z axis). This gives 230

measured modal uncertainties in the MACE 1-g uncertainty model (140 XY axes +

90 Z axis). Note that this puts an upper limit on the number of macroelements used

in the uncertainty localization. A summary of the MACE 1-g uncertainty model is

given in Chapter 2.

The modified system is MACE Configuration I in 0-g. The 0-g finite element

model for MACE contains nM -- 480 degrees of freedom, of which 280 modes are

retained from Nastran. There are 12 data sets available for identification, producing

rN = 17 measured degrees of freedom (9 XY axes + 8 Z axis) and fin = 24 measured

frequencies (14 XY axes + 10 Z axis).

Property

degrees of freedom (n(.))

FEM modes retained

measured degrees of freedom (r(.))

measured frequencies (fi(.))

Nominal (l-g)

678

375

9XY+8Z=17

14XY+ 10Z=24

Modified (O-g)

480

280

9XY+8Z=17

8XY+6Z=14

number of data sets

stiffness elements

mass elements

concentrated spring elements

concentrated mass/inertia elements

16

99

59

9

39

12

69

32

0

33

Table 5.1: MACE Configuration I 1-g to 0 g summary.
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In mappingthe degreesof freedombetweenthe two systems,oneneedsto examine

the nominal and modified finite element models. The modified 0-g finite element

model is developedby removing the suspensiondegreesof freedom,and eliminating

the nonlinear iterative techniqueto add the gravity stiffening and initial deformation.

The 1-g and 0-g finite element modelsare set up such that the mapping between

TMN = [ I480 0480.198 ] (5.1)

systems given by r/M = TMNr/N is

For this experiment, both the matrix method and sensitivity method are used

to localize and project the uncertainties. The matrix method is presented primarily

because it was the method used for the MACE flight. Therefore, it was performed

with no prior knowledge of the 0-g data. It was the basis of the uncertainty model

used in all of the closed loop experiments designed prior to flight. The sensitivity

method, although developed after the MACE flight, is presented as an improved

technique, and a better method for uncertainty localization and projection.

5.1.1 Matrix Method

For the MACE flight, the matrix method was used to develop an uncertainty model

in 0-g. Prior to flight, however, there was minimal information available for the pro-

jection. For instance, rather than the DEKF, a technique called Frequency domain

Observability Range Space Extraction (FORSE) [40], along with a Nonlinear Loga-

rithmic Least Squares Method (NLLS) [47] were used to obtain measurement models.

In addition, the measurement models were developed using the MACE system with

gimbal servos. Information about normal mode shapes at the measured degrees of

freedom was quite difficult to extract. Therefore, only frequency errors were localized

and projected for the MACE flight.

Figure 5.2 shows the frequency results of the MACE 1-g to 0-g projection using

the matrix method, and based only on 1-g frequency uncertainties. All model and

data points are normalized by the corresponding 0-g finite element model frequency.

Note that the 0-g data was only available after the flight. Inaddition, the modes
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are divided into XY and Z axescategoriesdependingon their contribution for ease

of explanation. The mean errors and bounds are exactly thoseused for designing

controllers for the MACE flight. There are a few modes,such as 3.73, 39.56, and

49.67 Hz modesin which the projection works quite well. Other modessuch as at

9.46, 49.18,and 56.97Hz wherethe method seemsto predict the sign of the mean

error, but not the magnitude. And finally there are those modessuch as at 2.26,

16.11,17.84,and 25.03Hz where the method doesnot even predict the sign of the

meanerror correctly. In examiningtheseresults, there is nothing consistentthat can

be concluded. This is primarily becausethe matrix method usesa pseudoinverseon

anunderdeterminedsystem,thus giving results that may not be physically realizable.

Another possibleerror with the matrix method is that gravity stiffening and initial

deformation, which manifests themselvesas a superpositionof the stiffness matrix,

is neglected.The matrix method cannot differentiate betweenphysical errors in the

stiffnessmatrix, and errors in the modeling of the gravity effects.

The matrix method wasalso performedusing the MACE 1-g uncertainty model

developedusing the DEKF, including the mode shapeuncertainties. The frequency

results for this caseareshownin Figure 5.3. The results for this casearesimilar to

those when only eigenvectoruncertainties are used,shown in Figure 5.2, and again

quite inconclusive.

5.1.2 Sensitivity Method

After the MACE flight, the sensitivity method was developed in an attempt to rectify

the inconsistencies of the matrix method, and develop the best method possible for

uncertainty localization and projection, given all of the uncertainty information. The

use of the sensitivity method therefore has the benefit of using mode shape, as well

as frequency uncertainty data. Although this seems to disable the comparison of

the methods, it should be noted that the matrix method is presented as the results

prior to flight, while the sensitivity method is presented as the best technique for

uncertainty localization and projection.

In developing the nominal 1-g finite element model, there are 99 stiffness elements,
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59 masselements,9 concentratedspring elements,and 39 concentratedinertia ele-

ments, for a total of 206. Becausethereare230measureduncertaintiesin the nominal

system, only two stepsof uncertainty localization are needed:at the element level,

and at the sub-elementlevel.

Uncertainty localization at the sub-elementlevel again requiresan examination

of the element. Table 2.4 showsthe six physical uncertainties that can be used in

developing macroelementsat the sub-elementlevel. For this experiment, only the

physical uncertainties AE, Ap, and AL are used, giving two independent mass and

two independent stiffness sub-elements. The physical uncertainty At can be found by

using a combination of the sub-elements already used; At, is assumed to be negligible.

The physical uncertainty Ar is very similar to AE and Ap. The only difference

is in the torsional and rod degrees of freedom. The modes that are identified are

bending, and the degrees of freedom measured are rotational. It therefore assumed

that the physical uncertainty Ar can be reproduced using a combination of AE and

Ap macroelements with only minor errors introduced.

In addition to the physical uncertainties, gravity macroelements are also defined.

In Chapter 2, the gravity effects presented are gravity stiffening and initial defor-

mation. One can examine the nonlinear procedure from Nastran to find the type

and magnitude of the gravity effects. Also, one can examine the gravity stiffening

and initial deformation adjustments given in Equations 2.5-2.8. It was found that

the primary gravity effects are: gravity stiffening and initial sag in the Lexan beam

elements; gravity stiffening in the gimbals; and gravity stiffening in the suspensions

cables. These gravity effects are also used in the development of macroelements at

the sub-element level.

A two step uncertainty localization procedure was employed. Note that at at

each of the two steps, a reduction in the macroelements is performed. Figure 5.4 is

a pictorial representation of the location of the errors in stiffness matrix for MACE

in 1-g. This was formed by examining the macroelements that are retained in the

two step localization procedure. Note that this figure only gives the location of the

errors retained, and not the magnitude. The axes on the left and top (given a square
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stiffnessmatrix) correspondto different degreesof freedom,wherethe abbreviations

are given asfollows:

N1 -
S1 -
N2 -
$2 -
N3 -
$3 -
N4 -
$4 -
N5 -

RRG -
PG -
SG -

RWA -
U_B -
U_T -
C1 -
C2 -
C3 -

C2S -

Node 1
Strut 1
Node2

Strut 2 (Active)
Node 3

Strut 3

Node 4

Strut 4

Node 5

Reaction Wheel Rate Gyros

Primary Gimbal

Secondary Gimbal

Reaction Wheel Assembly

Suspension Universal Joints (bottom)

Suspension Universal Joints (top)

Suspension Cable 1

Suspension Cable 2

Suspension Cable 3

Cable to Suspension Attachments

In addition, there are dotted lines in the figures to aid in the location of the errors.

For instance, the first vertical and horizontal dotted lines separates node 1 from strut

1; the second lines separate strut 1 from node 2, and so on.

Figure 5.4(a) shows the localized mean errors of the stiffness matrix that pertain

to the physical test article. It is not surprising that most of the stiffness uncertainties

in the test article shown in Figure 5.4(a) are localized to the struts. This is because

the measured modes are flexible modes which are primarily bending in the struts.

The types of physical uncertainties are a combination of changes in the modulus AE

and length AL. It is difficult to gain insight into such a large system such as this.

However, general trends are that there are modulus errors at the ends of the struts,

where there is a larger radius. This may indicate an error in radius (i.e. inertia). In

addition, there are both length and modulus errors in the active strut. This area is

likely to be the source of modeling errors because the different materials being used

are modeled as a composite material. And finally, the lengths of the middle of the
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Figure 5.4: MACE 1-g localized stiffness matrix mean error uncertainties.
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struts, i.e. where the strain gauges are located, also are occasionally in error.

The localized errors in the modeling of gravity effects are shown in Figure 5.4(b).

These uncertainties are primarily localized to the active strut area and the secondary

gimbal. The secondary gimbal area makes sense because four of the identified modes

are gimbal pendular modes, which are stiffened with the Nastran stiffening adjust-

ment. The active strut area is more difficult to interpret, however. Although it makes

sense for this area to contain large errors, it does not make sense that these errors are

primarily due to gravity. It may be that this area contains large errors, and sensitivity

method has trouble making the distinction between errors in the gravity adjustment,

and errors in the physical parameters. In addition, the center element of each strut

where the strain gauge acts appears to be the source of gravity modeling errors.

A final gravity adjustment that seems to be in error is in the suspension cables.

Because there are very large gravity effects captured in the tensioning of the suspen-

sion cables, intuitively there should be a lot of modeling errors in this area. However,

this is not the case, as shown in Figure 5.4(b). This may be a result of the lack of

measured suspension information, i.e. few measured suspension modes and degrees of

freedom.

In addition to stiffness uncertainties, the sensitivity method also localizes mean

errors in the mass matrix. Figure 5.5 shows the localized mass errors. Notice that

there are very few mass uncertainties. This is understandable because masses and

inertias are measured more easily than other parameters such as the modulus of

elasticity. Figure 5.5 shows that the mass properties for MACE are modeled quite

well.

Figure 5.6 shows the frequency results of the projection of both the 1-g mean

error and variance uncertainties into 0-g for MACE using the sensitivity method.

Notice the improvement using the sensitivity method compared to the matrix method

(Figure 5.3). The prediction of mean errors and bounds is excellent for all but the 2.26

and 9.46 Hz modes. It is thought that these modes are difficult to predict because of

their coupling with the gravity effects.

The process of localizing uncertainties for the MACE system was quite a difficult
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Figure 5.5: MACE 1-g localized mass matrix mean error uncertainties.

task for the MACE 1-g to 0-g example. It is thought that the number and type of

sensors make it difficult for the sensitivity method to ascertain the difference between

a physical uncertainty in an element, such as an error in the modulus, and a gravity

stiffening uncertainty, such as an initial deformation. In addition, the sensitivity

method (and localization and update methods in general) work best for small errors in

the already defined parameters. The errors in gravity effects that are localized tended

to be quite large. Table 5.2 shows a summary of the mean changes of frequencies from

1-g to 0-g, along with the predicted change in finite element models from 1-g to 0-g.

For some modes such as 4.6 Hz, the finite element model predicts the changes quite

well. However, for modes such as 17.82, 24.89, and 56.16 Hz, the predicted change

is incorrect in sign and magnitude. This indicates difficulties in the modeling, which

can only be overcome by a more thorough modeling of the gravity effects.

In order to accurately model and update modeling of gravity effects, a large num-

ber of different types of sensors must be used. Additional sensors on the nodes of the
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1-g Frequency (Hz) FEM 1-g to 0-g (%)

2.24 -1.1

4.60 18.9

9.79 3.3

Data 1-g to 0-g (%)

-7.8

17.7

2.4

16.19 0.4 4.1

17.82 -0.1 1.7

24.89 -0.5

-0.339.41

48.84 -0.6

49.01 -1.3

56.16 -1.4

Table 5.2: MACE 1-g to 0-g changes

2.9

0.0

4.2

-0.9

7.8

test article and the suspension system would aid in the localization of errors in the

modeling of gravity effects. In addition, more input into the modeling of the gravity

effects is needed, rather than assuming that the nonlinear iterative gravity stiffening

procedure in Nastran works correctly. Although is appears that this procedure works

well for gravity stiffening in the cables and the gimbals, it may need additional tuning

for the gravity effects within the test article that is not available.

An additional piece of work that could have been attempted in the MACE 1-g to

0-g example is the use of the iterative uncertainty localization strategy as shown in

Figure 4.5. This more complex strategy may have improved the results for the 2.26

and 9.46 Hz modes. However, because of the difficulties in using a sparse eigenvalue

solver that could also handle multiple rigid body modes, this option was not attempted

and is left for future work.

In order to show the overall results of the uncertainty localization and projection

for the sensitivity method including mode shapes uncertainties, transfer functions are

plotted. Figure 5.7(a) shows the transfer function from primary X gimbal to primary

X rate gyro using the 0-g finite element model, the 0 g finite element model shifted
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MACE 0-g FEM, 0-g FEM shifted by projected mean errors,

and three sets of data.
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by the projected mean errors, and three data sets taken on-orbit. Note that the

0-g damping ratios are shifted by the mean errors from the 1-g uncertainty model.

Although similar, there are two important areasof improvementof the shiftedmodel.

First, at high frequency,the 56.97 Hz mode has been predicted correctly, while there

is a 15% error in the finite element model. Secondly, the residue of 17.84 Hz mode

in the shifted model matches that of the data, thus changing the sign of the finite

element model residue.

Similar improvements can be seen in Figure 5.7(b), which plots primary Z gimbal

to strut 3 strain gauge. At high frequency, the 49.18 Hz mode has been predicted

correctly; and the zero at approximately 6 Hz is more lightly damped, thus more

accurately matching the data. Note also the small error in the prediction of the 2.24

Hz mode resulting from the incorrect prediction in the projected 0-g uncertainty

model.

The three 0 g transfer functions shown in Figure 5.7 are taken from identification

experiments using three different amplitude levels. Notice in Figure 5.7(b) there is

a small resonance that occurs in one of the transfer functions. This indicates the

structure possibly contains stronger nonlinearities than first suspected. Therefore,

another possible source of error in the uncertainty localization and projection process

is strong nonlinearities in the system.

5.2 MACE 0-g Configuration I to Configuration II

The second experiment used to verify the uncertainty localization and projection

methods developed in this work is MACE 0-g Configuration I, shown in Figure 5.1(a),

to 0-g Configuration II, shown in Figure 5.1(b). This example is much simpler than

the previous 1-g to 0-g projection because there are no modeling of gravity effects or

suspension degrees of freedom.

Details of the MACE 0-g Configuration I to 0-g Configuration II uncertainty

localization and projection are given in Table 5.3. The nominal system is MACE

Configuration I in 0-g. The 0-g finite element model for MACE contains nM= 480
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Property

degreesof freedom (n(.))

FEM modesretained

measureddegreesof freedom(r(.))

measuredfrequencies(fi(.))

Nominal (O-gC1)

48O

28O

9XY+8Z= 17

8XY+6Z--14

Modified (0-g C2)

480

280

9XY+8Z=17

8XY+6Z=14

number of data sets

stiffnesselements

masselements

concentratedspring elements

concentratedmass/inertia elements

12

69

32

0

33

4

69

32

0

33

Table 5.3: MACE 0-g ConfigurationI to ConfigurationII summary.

degreesof freedom,of which 280modesare retained from Nastran. Thereare 12data

setsavailablefor identification, producing rN = 17 measured degrees of freedom (9 XY

axes + 8 Z axis) and hN = 14 measured frequencies (8 XY axes + 6 Z axis). This gives

134 measured modal uncertainties in the MACE 0-g uncertainty model (80 XY axes

+ 54 Z axis). Note that this puts an upper limit on the number of macroelements used

in the uncertainty localization. The MACE 0-g uncertainty model was developed in

an analogous manner to the 1-g uncertainty model presented in Chapter 2.

The modified system is MACE Configuration II in 0-g. The 0-g finite element

model for the second configuration of MACE contains nM = 480 degrees of freedom,

of which 280 modes are retained from Nastran. There are 12 data sets available for

identification, producing rN = 17 measured degrees of freedom (9 XY axes + 8 Z axis)

and fN = 14 measured frequencies (8 XY axes + 6 Z axis). Notice the similarities

between the two systems, as shown in Table 5.3.

In mapping the degrees of freedom between the two systems, one needs to examine

the Configuration I and Configuration II finite element models. The Configuration II

finite element model is developed by rotating the corresponding degrees of freedom

that have been turned down in the "L" shape. This rotation matrix for each node is
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given by

rc2.Cl :

0

-1

0

1 0

0 0

0 1

0 10

-100

0 01

(5.2)

By mapping the other degrees of freedom as one to one, the modified to nominal, or

Configuration II to Configuration I mapping TMN can be developed.

Figure 5.8 shows the localized mass and stiffness mean error matrices for the

0-g uncertainty model. Although it is difficult to compare to those localized in

1-g because there is no insight into the magnitude of the errors, there are a few

similarities. First, the mass contribution is again quite small. This again shows how

well the masses/inertias are modeled for MACE. In addition, the active strut degrees

of freedom again were the subject of large errors, as were the ends of each of the

passive struts. Overall, the comparison is fairly good.

Figure 5.9 shows the frequency results of the MACE 0-g Configuration I to Config-

uration II projection. Notice how most of the Configuration II data points lie within

the mean errors and bounds predicted using the uncertainty localization and projec-

tion methods. The only points which do not (8.41 and 17.60 Hz) have only one point

that is not within the predicted ranges, and in each case, the parameter estimate had

not converged in the DEKF. With more time domain data, these estimates would be

within the predicted ranges as well. Application of the methods to this example was

much simpler, and easier to do compared to the 1-g to 0-g projection because of the

elimination of the gravity effects and suspension degrees of freedom.

Table 5.4 shows the change between the Configuration I and Configuration II

frequencies of the finite element model and data. Notice that although the magnitude

is not always correct, the general trends are very good. This shows that the overall

modeling of the MACE test article is very good, which makes it quite easy to localize

and project the remaining small uncertainties.
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Figure 5.8: MACE 0-g Configuration I localized mean error uncertainties.
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Figure 5.9: MACE 0-g Configuration I to Configuration II (C2) projection
using the sensitivity method.

126



0-g C1 Frequency (Hz) FEM 0-g C1 to C2 (_) Data 0-g C1 to C2 (%)

2.26 -4.6 -8.0

3.73 -53.0 -43.4

9.46 13.6 11.1

16.11 -18.3 -17.8

17.84 0.5 1.3

25.03 -4.5 -3.7

39.56 26.9 19.7

49.18 8.8 13.1

49.67 28.6 25.4

56.97 0.5 12.4

Table 5.4: MACE 0-g Configuration I to Configuration II changes

Figure 5.10 shows two transfer functions of the Configuration II finite element

model, the Configuration II finite element model shifted by the mean errors of the

projected uncertainty model, and the corresponding 0-g Configuration II transfer

function data. In both cases, the predicted transfer functions look more accurate,

especially at higher frequencies.

The final aspect of this example investigated was the examination of the localized

errors for Configuration II of MACE. Figure 5.11 shows the localized mass and stiffness

errors for Configuration II. Again the same general trends exist: little mass error and

errors in the active strut and ends of the passive struts. Although it is difficult to

compare the 0-g Configuration I and Configuration II localized errors, qualitatively

the errors localized tended to be quite similar.
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Figure 5.11: MACE 0-g Configuration II localized uncertainties.
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Chapter 6

Controller Synthesis and Analysis

This chapter describes the use of an uncertainty model as a tool for control synthesis

and analysis. The uncertainty model, in the form of mean errors and bounds on

critical modal parameters of a finite element model, can be from either the nominal

or modified systems. This chapter demonstrates the usefulness of an uncertainty

model in control design on flexible systems. First, the general control design problem

for uncertain systems is presented. An overview of controller synthesis and analysis

methods which benefit from the use of an uncertainty model is given. In addition,

the controller synthesis and analysis techniques used for the MACE flight are detailed

showing an application of the uncertainty model for control design in an experimental

setting. These methods make use of the finite element model, uncertainty model, and

a real-# analysis tool. The use of these methods is demonstrated experimentally using

0-g controllers for MACE that were designed using the predicted 0 g uncertainty

model. In addition, the conservatism o,f the uncertainty model is examined for each

of the controllers presented.
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6.1

Figure 6.1: Interconnection of plant G, controller K, and uncertain block A.

Control of Uncertain Systems

The design of controllers of uncertain structural systems is one of tile most challeng-

ing problems in the field of controlled structures. Stringent performance requirements

necessitate the use of high authority controllers. The success of these controllers,

however, is directly linked to the accuracy of the modeling of the system and uncer-

tainties, as well as the ability of the robust control design technique to handle the

uncertainties.

Uncertainties in a structural system which are important to control design are usu-

ally caused by both unmodeled and mismodeled dynamics. Unmodeled uncertainties

are usually at higher frequencies, and are treated using an unstructured block as

shown in Figure 6.1, where G is the plant dynamics, and A is an unstructured un-

certainty block. Although this type of uncertainty is important, it does not limit

the achievable performance in the problem described in this work. It is therefore not

examined here.

Mismodeled dynamics are the primary cause of the parametric uncertainty similar

to that in the uncertainty model described in this work, i.e. mean errors and bounds

on the modal parameters. Because of the direct form of the uncertainty, the A block

in Figure 6.1 can be structured to fit the type of uncertainty for which the system is

being designed/examined. This is the type of uncertainty for control design which is

examined here.
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6.1.1 Controller Synthesis

Techniques used to design controllers which are robust to parametric uncertainty can

essentially be divided into six distinct categories: norm-based, #, multiple model,

stochastic, de-sensitizing and classical. A brief overview of these methods is given

here.

Norm-based methods are those methods in the 7t2 and 7/0° framework which ad-

dress the problem of parametric uncertainty. Guarantees on robust stability using an

unstructured, complex block can be made using an 7/_ control design technique [67].

In the 7/2 framework, robustness is added by coupling an 7/o° uncertainty test with

an 7/2 performance metric [68].

To reduce the conservatism inherent in a single complex block, the #-synthesis

technique was developed [69]. However, these approaches are known to be conser-

vative for systems with constant real parameter uncertainties, i.e. the uncertainty

model in this work. Therefore, the real # and mixed # techniques were developed to

handle real parameter uncertainties [69-71]. In a series of papers, How ct al. showed

how the upper bounds for mixed # are a generalization of the absolute stability cri-

terion, where linear and nonlinear real parameter uncertainties are analyzed [72]. In

addition, Popov controller synthesis was developed [73-75], where an 7/2 performance

metric can now be introduced which gives a much tighter bound on the real parameter

uncertainty.

Multiple model techniques have been used recently to gain robustness to para-

metric uncertainty by designing controllers around several models of an uncertain

system [76, 77]. Although there are no guarantees, less conservative closed loop re-

sults with a smaller amount of computation are usually achieved. Stochastic tech-

niques such as Maximum Entropy [78, 79] have been developed which introduce a

multiplicative white noise model to capture the parameter uncertainty of the sys-

tem. De-sensitizing techniques usually take an already proven unrobust method such

as LQG and de-sensitize it to variations in parameters. For example, Blelloch and

Mingori [80] modify the state and noise weighting matrices in the LQG compensator
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design to account for structured parametric uncertainty, thus reducing optimality.

Sesakand Likins [81]add sensitivity stateswhich penalizethe variation of the perfor-

manceobjectivewith respectto parametervariations. Thesestatescanbeeliminated

from the model usinga singular perturbation technique.

Although fairly ad hoc, classical techniques have been used for many years in

designing controllers, many of which had plants that were uncertain. More recently,

ties between classical and robust techniques have been made to gain insights into how

the robust methods work, and to develop better classical methods [82-85].

6.1.2 Controller Analysis

The objective of controller analysis is to examine stability of controllers around an

uncertain plant. Because of its close relationship to the synthesis of controllers, many

of the controller analysis techniques are directly linked to the controller synthesis

techniques. This is especially true of those design techniques which obtain stability

guarantees. The analysis techniques that are discussed here examine the stability of

any controller given a model of the plant and uncertainty.

The most simple analysis techniques are the classical graphical Nyquist and Nichols

plots which have been adapted to contain uncertainty [86]. For flexible systems, how-

ever, these techniques primarily address the higher frequency unmodeled dynamics

issue. Polynominal techniques such as Routh-Hurwitz [86] and Kharitinov's Theo-

rem [87] examine the characteristic polynomial of the system to test stability. For

complicated plants, however, these results are very conservative.

Another type of analysis technique that was developed during the MACE program

is using the open loop data to predict the closed loop stability and performance [88].

The controller is wrapped around the open loop data to examine both the model and

data, using the Nichols and sensitivity plots. Although there are no guarantees, this

technique works quite well for systems which are primarily linear and repeatable. If

these conditions do not exist, the ability of the method to predict closed loop stability

and performance degrades.

The two methods that seem to work the best for the general case are a # test
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and Monte Carlo simulation. The it test [89] can be used to test for stability in

the presence of complex or real uncertainties. The same difficulties exist, however,

such as the real # test not being continuous [71]. The Monte Carlo simulation can

be performed where each of the parameters in the uncertainty model are allowed to

vary, and a large number of cases are run to test for stability. This has the obvious

limitations of large computational effort and no guarantees. A simplification of the

Monte Carlo simulation is analyzing the controller on only a few systems, as in the

multiple model controller synthesis. Although there are no guarantees, this drastically

reduces the required computational effort.

6.1.3 Utilization of the Uncertainty Model

In addition to the use of controller synthesis and analysis techniques, the use of the

uncertainty model in this process needs to be addressed. The uncertainty model is

in the form of mean errors and bounds on the frequencies, modes shapes, and even

damping (from l-g). The next question is how to use all of this information in the

control design procedure.

Figure 6.2 shows four options of using the uncertainty model. Given the nominal

parameter set 80, the uncertainty model consists of mean errors A_ and bounds A_

on these parameters. The first option is the least conservative: shift the finite element

model by the mean errors to create a control design model for synthesis; analyze using

the predicted bounds as symmetric parameter variations. This case is termed "shifted-

symmetric". The next two cases are intermediate, such that asymmetric parameter

variations are used, and the control synthesis model is either the original finite element

model shifted by the mean errors, or just the finite element model. These two cases

are termed "shifted-asymmetric" and "unshifted-asymmetric" respectively. The final

case is the most conservative one in which the finite element model itself is used for

controller synthesis, and the parameter variations are symmetric and include both

the predicted mean errors and bounds. This is shown in Figure 6.2 as the "shifted-

asymmetric" case. The choice of the application of the uncertainty model is made

based on the confidence of the prediction of the uncertainty model.
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Figure 6.2: Types of controller synthesis and analysis using an uncertainty

model

6.2 MACE 0-g Results

Controllers for the MACE flight were designed in terms of "families". Each family

consisted of six to eight controllers, each designed the same type of robust control

technique. As each controller was designed, the next controller built on the knowl-

edge of the previous design, and increased the control authority. Therefore, the first

controller in a family was usually lower authority, while the last controller was de-

signed to really push the limits of the technique, finite element model, and uncertainty

model.

6.2.1 Controller Synthesis

Controller synthesis for the MACE flight took the form of two approaches. One

was the design of classically rationalized controllers as described in Rcf. 85. While

these controllers worked quite well on-orbit, they did not perform as well as the

second option [44]. The second option was a blending of techniques that were ex-

amined in Refs. 90, 88. First, a lower authority LQG controller [91] is designed to

understand tradeoff between the regulator and estimator, and areas where robust-

ness may be needed. Next, a de-sensitizing method called Sensitivity Weighted LQG

(SWLQG) [92, 90] is used to add robustness to the LQG controller by making an
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adjustment to the state costsof the regulator and estimator problems. Finally, the

Multiple Model technique[76,77] is usedas the final designto really push the limits

of controller authority. The SWLQG controller from the previousdesignis usedasan

initial guessin the optimization. This blending of techniqueshas worked quite well

in designinghigh authority robust controllersin 1-g and 0-g. Although other robust

control designmethods could handle the uncertainty model presented,the multiple

model technique,eventhough there are no closedloop guarantees,achievedthe best

closedloop results for the computational effort needed.This factor of a lower com-

putational effort becamea significant factor for redesignof controllers while MACE

wason-orbit.

6.2.2 Controller Analysis

Controller analysis for the MACE flight was again in two forms. The first was the

use of open data to predict the closed loop stability and performance by examining

the Nichols and sensitivity plots [88]. This method, however, could only be used

during the flight when open loop data was available (after it had been downlinked.)

Prior to flight, a mixed-# analysis using the finite element model and the predicted

uncertainty model was used [48, 93]. This method is detailed here.

For the MACE flight, there were no uncertainties developed for the mode shapes.

Therefore, only uncertain frequencies and damping ratios were considered in the de-

velopment of the mixed-# analysis tool.

For a system represented in state space as

k = Ax+Bu

y = Cx + Du, (6.1)

the frequency and damping ratio variations are treated as uncertainties in the A

matrix of the system dynamics. Each mode of the system can be represented with a

2 x 2 matrix, A2×2, of the following form

A2x2 _
0 1

-w_(1 + 2aJ_) -2(0w0(1 + a;5()
(6.2)
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where 5,,,,5_ 6 [-1, 1] are the uncertain real parameters and a_ and a¢ are real

scaling factors that represent the percent uncertainty in the frequency and damping

ratio, respectively. Note that for systems with lightly damped modes, _ << 1 and for

a_ << 1, treating uncertainty in the square of the frequency is a good approximation

to half the uncertainty in the frequency alone. This matrix can then be represented

using the internal feedback loop representation [94]

= Aox + Bop

q = Cox

p = Aq.

(6.3)

where

Ao =

Cow

Co =

Co;

0 1

-2Co o

, A= 6_0

Bo(; : , Co_ = [ WO

With the uncertainty loops closed,

, Bo=[Bo_ Bo¢],

, Bow :-

o],co =[o2 o]

(6.4)

A2×2 = Ao + BoACo, (6.5)

which is exactly as in Equation 6.2.

An analysis tool was sought which investigated the stability of the system for all

possible perturbations included in the uncertainty model. This type of uncertainty

lends itself to a real-# analysis of the system. However, because real # is not continu-

ous in the problem data [71], this tool cannot bc used for the practical system such as

MACE. If a complex block could be added to the uncertainty, however, the problem

would be continuous, and therefore increase its usefulness for the MACE system.

Drawing upon the evaluation of controllers using data, where the sensitivity singu-

lar values are plotted using the model and data and discrepancies are used as a guide

138



in designingrobust controllers,a weightedsensitivity block is added. The sensitivity

transfer function (I + G(jw)g(jw)) -1, provides a measure of how close to singular-

ity, i.e. instability, the closed loop system is. If the complex block is defined as the

weighted maximum singular value of the sensitivity, or 1/(7_(I + G(jw)K(jw))-l),

the weighted complex block implies that no allowable parameter shift can cause the

sensitivity to peak more than 7 above the nominal sensitivity.

Large deviations between the singular values as calculated using the model and

using measured data indicate where modeling errors may cause stability problems. As

such, the weighting function used in the sensitivity loop is the inverse of the nominal

maximum singular value of the sensitivity.

The final aspect of the mixed-# analysis tool is the scale factor for the weighting

function. Obvious limits for this scaling factor are 1 and co. Using a scaling factor

of 1 tests whether or not the maximum singular value of the sensitivity transfer

function increases for any allowable perturbations. This is clearly too stringent a

test. Using a scaling factor of oc ignores the sensitivity loop altogether and tests only

stability. Through experimentation and comparing the sensitivity transfer function

calculated using both the model and measured data for compensators that stabilized

and destabilized the system, it was found that a scaling factor of 2 achieved good

prediction results. However, if the nominal sensitivity transfer function is large (> 3

or 4) over a particular frequency range, then a smaller scaling factor should be used.

Figure 6.3 shows the interconnection structure of uncertainty inputs and outputs

of this mixed-# test. The weighting function, W, is the scaled inverse of the maximum

singular value of the nominal sensitivity transfer function. Stability of this system,

achieved if # < 1, implies that the deviation in the maximum singular value of

the sensitivity transfer function will be no more than a factor of 2 for any feasible

perturbation.

6.2.3 Utilization of the Uncertainty Model

For the MACE flight, the predicted 0-g uncertainty model was developed using the

matrix method presented in the previous chapter. The frequencies are shown in Fig-
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Figure 6.3: Interconnection of the open loop system (G), compensator (K),

real parameter uncertainty (A0), and weighting on the Sensitivity

(W), and the Sensitivity delta block (As).

ure 5.2. Although the 0-g data was not available, it was known that the matrix

method did not provide a physically based solution. Therefore, confidence in the

prediction of the 0-g uncertainty model was lacking. Because of this, most of the

pre-programmed controllers for the MACE flight were designed using the most con-

servative utilization of the uncertainty model, or the "symmetric-unshifted" case in

Figure 6.2.

Figure 6.4 shows an example of how the mixed-# analysis tool and uncertainty

model were used in controller analysis and synthesis. The uncertainty model used is

the most conservative, unshifted-symmetric case. The parameters in the uncertainty

model are the frequencies an damping ratios only. Because of the difficulties in

predicting the 0-g damping, 50% variations were used in the uncertainty model.

Figure 6.4(a) is a plot of # for an LQG controller designed for a sample system.

Notice the high values of # in the 3.3, 10, and 17 Hz ranges. This indicates areas

that need to be addressed with robust control in the synthesis procedure. This is

accomplished in an iterative fashion. Figure 6.4(b) shows a plot of # for a SWLQG

controller on the same topology, at the same controller authority, and robustified

in each of the problem areas. Note the 3.3, 10, and 17 Hz ranges are all under 1,

indicating the design is robust to the given changes in the uncertainty model.
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6.2.4 Closed Loop Results

The first set of closed loop results presented corresponds to the LQG and SWLQG

controllers evaluated in Figure 6.4. The topology is an X axis design, as shown in

Figure 5.1(a): the disturbance enters the X axis secondary gimbal; the performance

is the integrated X axis rate gyro in the primary payload; the inputs are the X and Y

axes reaction wheels; and the outputs are the X and Y axes rate gyros at the center

node, and the X axis rate gyro. Figure 6.5 shows the closed loop results for these

two controllers. Although the LQG controller is not unstable, it is quite sensitive in

each of the predicted areas: 3.3, 10, and 17 Hz. The SWLQG controller is stable and

quite robust, as predicted.

The next topology is the benchmark control topology. This topology is a two-

disturbance, five performance, five input, and five output system. Examining Config-

uration I of MACE in Figure 5.1 (a), two disturbances enter into the secondary gimbal

in the X and Z axes; the five performances are each integrated rate gyros in the X
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and Z axesof the primary payload,and X, Y, and Z axesof the rate gyros at the

centernode; the five inputs include the three reactionswheelsat the centernode, and

X and Z axesof the primary gimbal; and the five outputs are the five rate gyros at

the center nodeand in the primary payload.

Closedloop controllersweredesignedand implementedon MACE in 0-g to exam-

ine the tradeoffsof usingthe uncertainty model. Two controllersareexaminedfor this

topology. The first wasdesignedand analyzedusingthe most conservative,unshifted-

symmetric casein Figure 6.2. The secondcontroller wasdesignedand analyzedusing

the most unconservativecaseof symmetric-shifted in Figure 6.2. Multiple-model

control designwasused for both cases,although different authorities are presented

primarily becausethe lessconservativecaseallowedfor higher authority.

Figure 6.6 showsa plot of the combinedclosedloop metric as a function of fre-

quency. The performancemetric weights the five individual performanceswith 1 for

each of the gimbal integrated rate gyros, and 0.1 for each of the center node rate

gyros,as this is a pointing experiment. The "Open Loop" systemis self-explanatory;

the "Servos-Only"systemis using the first layer of control which is the four encoder-

gimbal servosystems;"Unshifted-SymmetricFEM CST" is the best pre-programmed

high-authority controller using the unshifted finite element model and symmetric pa-

rameter variations covering both the predicted mean errors and bounds of the uncer-

tainty model; "Shifted-Symmetric CST" is the best pre-programmed high-authority

controller using the shifted finite element model and symmetric parameter variations

derived using only the predicted bounds of the uncertainty model. Notice that the

less conservative shifted-symmetric controller performs 2.3 dB (7%) better than the

unshifted-symmetric controller. This shows the benefits of using the the less conser-

vative shifted-symmetric approach for controller synthesis and analysis.

There are a few drawbacks, however, because of the inaccuracies of the matrix

method based uncertainty model. The first can be seen in the 17 Hz range as an

increase in sensitivity of the closed loop system. The 17 Hz mode was one of the

frequency errors that the matrix method based prediction was incorrect (Figure 5.2).

In addition, closed loop systems for both controllers are sensitive at 50 Hz, primarily
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Figure 6.6: MACE 0-g closed loop results using unshifted model/symmetric

bounds (FEM) and shifted model/symmetric bounds (shifted).

because the uncertainty model did not predict the large errors in this frequency

region. If the uncertainty model developed using the sensitivity method (Figure 5.6),

which provides physical, as well as mathematical results, these problems may not

have appeared.

It is debatable whether the increased performance was the result of good prediction

of mean errors, or reduced conservatism in the bounds, especially since the basis of

the uncertainty model used for the design of both controllers for flight was the non-

physical matrix method. In reality, it is probably a combination of both. It would be

interesting to test new controllers designed using the improved sensitivity method,

however, this is not a realistic scenario.

6.2.5 Analysis of Uncertainty Model

Although a redesign of controllers using the improved uncertainty model created using

the sensitivity method was not a realistic option for this work, analyzing controllers
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that havealreadybeenimplementedcanbe done. Figure 6.7showsthe mixed-# plot

of the "Pre-prog. FEM CST" controller in figure 6.6 for three different uncertainty

models. Figure 6.7(a) showsthe # plot for the most conservativeunshifted-symmetric

casewhere the unshifted finite elementmodel, and the symmetric parameter varia-

tions which coverboth the predictedmeanerrorsand boundsareused. Figure 6.7(b)

showsthe # plot for the least conservativeshifted-symmetric casewhere the finite

elementmodel is shifted by the predictedmeanerrors, and the symmetric parameter

variationsarejust the predictedboundsof the uncertaintymodel. Figure 6.7(c)shows

the # plot for the actual 0-g uncertainty model: the 0-g finite elementmodel shifted

by the mean errors from the 0-g data, and parameter variations consistingof the

parameterbounds from the 0-g data. The conservatismof the unshifted-symmetric

casepreventedthe controller from achievingevengreater performance. The shifted-

symmetric case,however, is quite similar to the actual 0-g data, implying the use

of the uncertainty model generatedfrom the sensitivity method would decreasethe

conservatismof the designs,and thereforeincreaseclosedloop performance.
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Chapter 7

Conclusions

7.1 Summary

A set of methods to identify stochastic uncertainties between a finite element model

and set of hardware in a nominal environment, and to predict stochastic uncertainty

model a modified have been developed. The approach of this work is to first iden-

tify mean errors and bounds on critical parameters of the nominal system. These

uncertainties are then localized to specific degrees of freedom in order to form mass

and stiffness uncertainties. Once in this form, the uncertainties can be mapped and

projected into the modified system to create an analogous uncertainty model.

Many uncertainties exist, mean and variance, between a set of hardware and

structural model. In this work, a summary of these uncertainties is given. These are

described by first the large groupings of linear and nonlinear uncertainties. Linear

uncertainties are then sub-divided into the following groups: physical parameters such

as the geometric and material properties; modeling uncertainties such as discretization

and incorrect element physics; internal couplings such as joints and/or attachments

and actuator and sensor dynamics; external dynamics such as aerodynamic, gravity, or

closed loop coupling; testing uncertainties such as sensor and process noises and bias

errors. The nonlinear uncertainties can be subdivided into two categories: weak and

strong nonlinearities. Of these uncertainties, most are capturable using the methods

developed in this work except for the modeling uncertainties and strong nonlinearities.
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These two types of uncertainties cannot be representedwith either a massand/or

stiffnessmeanerror or varianceuncertainty.

Many of the uncertaintiesdescribedcanbe found by thoroughly testing the struc-

ture. A testing summary is presentedin this work which enablesthe observingof all

of the uncertainties,both meanand variance.Thesetests involve varying testing pa-

rameterssuchasactuators, disassembly/reassembly,time betweentests,disturbance

levels,boundary conditions, and structural and non-structural changes.

The nominal or 1-g uncertainty model can be accurately describedusing mean

errorsand boundson the frequenciesand modeshapesof the nominal system. These

are found by identifying the critical parametersof the system using an identification

procedurethat parameterizesthe finite elementmodel, actuator and sensordynam-

ics, and time delaysseparately.The Discrete Extended Kalman Filter (DEKF) was

the method usedto identify the parameters,although other methodscould also have

beenused.The DEKF, in addition to estimating the parametersof the system,gives

additional information in the form of an measurementerror covarianceon the pa-

rameters. Although this matrix is not the exact measurementerror, it does give

relative confidencefactorsin the estimation of the parameters.Theseconfidencefac-

tors can then beusedto find the weightedmeanerror and bound for eachparameter

of the uncertainty model. The DEKF appearedto work quite well as an identi-

fication/parameter estimation method in all sampleproblems and on experimental

MACE data. Becauseonly oneidentification/parameter estimation method wasused,

however,a more thorough examination of thesetypes of methodsis in order.

Two methods for localizing the uncertainties and projecting them into a modi-

fied, or 0-g environment have beendeveloped.The first is calleda matrix method,

which manipulatesthe first order perturbation equationsof the structural eigenvalue

problem in order to developthe modified uncertainty model. The solution from this

method, however,may give results that may be non-physical, in that pseudoinverses

utilized during the derivation are on underdeterminedsystems. Therefore tile mass

and stiffnessmatricesmay be non-physical, implying difficulties with the projection

step. This wasexemplifiedin the MACE examples,wherethe matrix method did not
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give consistentresults.

A secondmethod, termed the sensitivity method, builds on the first order pertur-

bation by adding a specificform to the massand stiffnessuncertainties. This form is

a combination of macroelementswhich representpossiblephysical uncertainties,and

scalefactors. Although a pseudoinverseis again usedin the derivation of the sensi-

tivity method, it is now on an overdeterminedsystem, implying that the massand

stiffness uncertainties, as well as the projected modified or 0-g uncertainty model,

arephysically based,as well asmathematically based.

A practical algorithm using the sensitivity method is presented. This algorithm

consistsof first examiningthe relative numbersof measuredparametersand possible

massand stiffnessuncertainties.A layeredapproachis suggested,which first localizes

uncertainties in groupsof elements,then reducesthe number of thesegroups; local-

izesuncertainties in elements,then reducesthe number of theseelements;and then

localizesthe uncertaintiesin sub-elements.In addition, if the meanuncertainties are

large, an iterative procedurecan be used wherean eigenvalueproblem is solved at

eachstep, after the meanerror localization.

The uncertainty localization andprojection methodsaredemonstratedusingboth

asampleproblem,and the MiddeckActive Control Experiment (MACE). The sample

problem showsthat the sensitivity method can be usedto identify both mean error

and varianceuncertainties in the physical massand stiffnessmatrices using partial

information, i.e. a subsetof measuredmodes and degreesof freedom. The matrix

method,becauseit isnon-physical,canonly solvefor the correctphysicaluncertainties

by using all of the measuredmodesand degreesof freedom,which is not a realistic

scenario.The sensitivity method is thereforethe best method to usefor localization

and projection of uncertainties.

The MACE experimentgives experimentalvalidation to the uncertainty model,

localization, and projection methodsdevelopedin this work. Becauseof large num-

ber of data setsfor MACE in 0-g aswell as l-g, the 1-g to 0-g projection could be

completely examined.The sensitivity method performedquite well in predicting the

meanerrors and bounds,while the matrix method predictably did not. The localiza-
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tion stepof the sensitivity method wasquite difficult for this example,however.This

is most likely causedby largeerrors in the modelingof gravity effects,and difficulties

in localizing superposableuncertaintiessuchasphysical modelingerrors and gravity

modelingerrors (using the small number of sensorsgiven. It was thereforeconcluded

that not only should mode shapeuncertainties be usedalongwith frequencyuncer-

tainties in the localization process,but a large number of sensors are needed for more

difficult problems such as the 1-g to 0-g projection.

In another example using MACE, the uncertainty model of a second "L" configu-

ration for MACE in 0-g was developed, based on the original straight configuration.

The uncertainty localization and projection worked very well for this example, and

did not have the difficulties of the 1-g to 0-g example. This was because there were

no superposable gravity uncertainties to localize, therefore simplifying the problem

immensely.

Finally, a chapter on utilizing an uncertainty model for control design and analysis

is presented. A summary of methods for controller synthesis and analysis that would

benefit from the use of an accurate uncertainty model is given. Four cases of utilizing

the uncertainty model are recommended, depending on the confidence of the user in

the uncertainty model. These are: shifted-symmetric, shifted-asymmetric, unshifted-

asymmetric, and unshifted-symmetric, where the (un)shift operator implies that the

critical parameters of the finite element model have been (un)shifted by the predicted

mean errors of the uncertainty model, and the (a)symmetric operator implies the

controller is designed and/or analyzed using (a)symmetric parameter variations cre-

ated using the uncertainty model. Two 0-g controllers from the MACE flight are

given which utilize the most conservative unshifted-symmetric case, and the least

conservative shifted-symmetric case. Although both controllers performed well, the

less conservative case performed slightly better, thus showing the usefulness of an

accurate uncertainty model for control design. The closed loop MACE experiments

showed that an accurate uncertainty model can be very helpful for controller synthesis

and analysis.
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7.2 Contributions

1. Uncertainties or errors between a (finite element) model and set of hardware

have been detailed in many sources, although they are usually incomplete. This

work, however, gives the most complete description of structural modeling un-

certainties of its kind, along with a set of tests to identify them. In addition,

the uncertainties are uniquely identified as stochastic, rather than determin-

istic. Therefore, one of the more significant contributions of this work is the

development of an uncertainty model, which consists of bounds, as well as mean

errors, on critical parameters of a structural system.

2. Error localization and update methods for finite element models have been areas

of on:going research for the past few decades. This work develops an additional

method, called the matrix method, which localizes errors by manipulating the

first order perturbation matrices of the structural eigenvalue problem. Although

unique in its derivation, this method provides a non-physical solution. A sec-

ond method, called the sensitivity method, builds upon the work of Collins et

al. and Lallement et al. where a structure is given to the mass and stiffness

errors. Although this is an already proven method, this work extends the pre-

vious work by providing a complete algorithm for the practical localization of

errors. In addition, this work extends the sensitivity method in the significant

contribution of including variance uncertainties, as well as mean errors. This

provides the basis for modeling practical structures whicl_ are stochastic, rather

than deterministic in nature.

3. Application of the uncertainty localization and projection methods to the prob-

lem of structural control in a different environment is a significant contribution.

The idea of localizing mass and stiffness uncertainties in the nominal 1-g en-

vironment, and projecting them into the modified 0-g environment using the

finite element models is quite unique. This allows the development of an uncer-

tainty model in an environment that is distinct from the original, i.e. modified

or O-g.
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4. Becauseof the successof the MACE experiment,a large setof data in both 1-g

and 0-g hasbeencollectedwhich hasallowedthe experimentalvalidation of the

methods developedin this work. Two exampleswereused for this validation:

the complex 1-g to 0-g transition, and the 0-g Configuration I to Configuration

II change. For eachexample,excellentprediction of mean errors and bounds

on parameterscritical to control designon the systemwasshown.

5. The final contribution follows from the utilization of the uncertainty model for

control design. Four methods of this utilization are presented, two of which

weredemonstratedduring the MACE flight. In addition, the prediction of the

0-g uncertainty model for MACE wasoneof the significant contributing factors

in the designand evaluationof over200pre-programmedcontrollerswhich were

stable on-orbit.

7.3 Recommendations

1. Although the summary of model uncertainties given in this work is one of the

most thorough of its kind, because the uncertainties are considered stochas-

tic, more work needs to be done in examining how these uncertainties manifest

themselves into the model. Specifically, how the modeling uncertainties such as

discretization errors and incorrect element physics, and nonlinearities manifest

themselves into the uncertainty model, and subsequent localization and projec-

tion is not known. It was assumed that these are small, or could be represented

using mean error and variance uncertainties. An examination of a small order

example with a weak nonlinearity, for instance, would add insight to the local-

:ization and projection methods, as well as adding confidence in their application

to systems with such modeling uncertainties.

2. The modeling of gravity effects for MACE was shown to be suspect because

the 1-g to 0 g transition of the model and data were significantly different. A

more thorough examination of the modeling of these effects should be done.
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This probably meansa more thorough set of openloop test, i.e. moresensors.

More sensorgive more information on the mode shapes,and therefore better

model updating and uncertainty localization. Additional sensorssuch as ac-

celerometerson the nodesand suspensioncableswould give more insight into

the modeling of the gravity effects,and update of the finite elementmodel.

3. The DiscreteExtendedKalman Filter (DEKF) wasusedto estimatethe param-

etersof the system,andthereforeidentify the modal. Although an identification

technique is neededwhich parameterizesthe finite element model and actua-

tor/sensor dynamics and time delaysseparately,the DEKF is not necessarily

the best choice. For instance,there are no guaranteesagainst bias errors. An

examinationof the parameterestimation techniquesis neededto createthe best

uncertainty model. This canonly be done using a detailed examination of'the

benefitsand drawbacksof eachcorrectlyparameterizedidentification technique.

4. With a retesting of the MACE hardware,another examination of the methods

localization and projection methodscan be madeusing the additional sensors.

In addition, the iterative proceduresuggestedfor systemswith larger errorscan

be employedin order to accurately identify the model errors. This requiresa

sparsematrix eigenvaluesolver which can handle large systems (greater than

500degreesof freedom),and rigid body modes.

5. The practical iterative procedurefor localizing the mean errors in a finite ele-

ment model needsto be examinedfor the localization of varianceuncertainties

also. This requiresthe solution of a nonlinearstatistics problem which is quite

difficult.

6. The final recommendationinvolvesthe useof the uncertainty model in control

design. Controller synthesisand analysis techniqueswhich usean uncertainty

model usually designand analyzea controller for all possibleperturbations of

the uncertainty model. If the physical basisof the uncertainty model is a lower

rank, however, this may bc overly conservative. For instance, if there is an

153



error in the density of onefinite element,all of the frequenciesand modeshapes

change.Controller synthesis and analysis techniques will usually design for all

perturbations of the uncertainty model. This is quite conservative, however,

because there is only one perturbation. Additional work should be done in

attempting to reduce this uncertainty model, based on the physical mass and

stiffness uncertainties.

154



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Ewins, D. J., Modal Testing: Theory and Practice, John Wiley and Sons, Inc,

New York, NY, 1984.

Ljung, L., System Identification: Theory for the User, Prentice-Hall, Inc., 1987.

Craig, R. R. and Blair, M. A. C., "A Generalized Multiple-Input Multiple-Output

Modal Parameter Estimation Algorithm," AIAA Journal, Vol. 23, No. 6, 1994,

pp. 931-937.

Lee, H. G. and Dobson, B. J., "The Direct Measurement of Structural Mass,

Stiffness, and Damping Properties," Journal of Sound and Vibration, Vol. 145,

No. 1, 1991, pp. 61-81.

Balmes, E., Experimental/Analytical Predictive Models of Damped Structural

Dynamics, Ph.D. thesis, Department of Aeronautics and Astronautics, M.I.T.,

Cambridge, MA, May 1993. MIT SERC report # 7-93.

Karlov, V. I., Miller, D. W., Vander Velde, W. E., and Crawley, E. F., "Identi-
fication of Model Parameters and Associated Uncertainties for Robust Control

Design," AIAA Journal of Guidance, Control, and Dynamics, Vol. 17, No. 3,

May.-June 1994, pp. 495-504.

Caesar, B., "Updating System Matrices Using Model Test Data," Proceedings,

the International Modal Analysis Conference (IMAC), 1987.

Link, M., "Identification and Correction of Errors in Analytical Models Using

Test Data - Theoretical and Practical Bounds," Proceedings, International Modal

Analysis Conference, 1990, pp. 570-578.

Maia, N. M. M., Reynier, M., and Ladeveze, P., "Error Localization for Updat-

ing Finite Element Models Using Frequency Response Functions," Proceedings,

International Modal Analysis Conference, 1994, pp. 1299-1308.

Lieven, N. A. J. and Ewins, D. J., "Correlation of Mode Shapes, the Coordinate

Modal Assurance Criterion," Proceedings, International Modal Analysis Confer-

ence, 1988, pp. 690-698.

155



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Lieven, N. A. J. and Waters, T. P., "Error Location Using Normalised Orthog-

onality," Proceedings, International Modal Analysis Conference, 1994, pp. 761-

764.

Lin, C. S., "Location of Modeling Errors Using Modal Test Data," AIAA Journal,

Vol. 28, No. 9, September 1990.

Baruch, M. and Bar Itzhack, I. Y., "Optimal Weighted Orthogonalization of

Measured Modes," AIAA Journal, Vol. 16, Apr. 1978, pp. 346-351.

Baruch, M., "Optimization Procedure to Correct Stiffness and Flexibility Matri-

ces Using Vibration Tests," AIAA Journal, Vol. 16, Apr. 1978, pp. 1208-1210.

Berman, A. and Nagy, E. J., "Improvement of a Large Analytical Model Using

Test Data," AIAA Journal, Vol. 21, No. 8, June 1983, pp. 1168-1173.

Sidhu, J. and Ewins, D. J., "Correlation of Finite Element and Modal Test Stud-

ies of a Practical Structure," Proceedings, International Modal Analysis Confer-

ence, 1984, pp. 756-762.

Guyan, R. J., "Reduction of Mass and Stiffness Matrices," AIAA Journal, Vol. 2,

No. 1, Feb. 1965.

Gysin, H., "Critical Application of the Error Matrix Method for Localisation of

Finite Element Modeling Innacuracies," Proceedings, International Modal Anal-

ysis Conference, 1986, pp. 1339-1351.

Natke, H. G., "Indirect Methods: Correction of the Results of Systems Analysis

by Results of Identification - A Survey," Identification of Vibrating Structures,

1982, pp. 225-256.

O'Callahan, J. C., "Determination of Analytical Model Differences Using

Modal Updating," Proceedings, International Modal Analysis Conference, 1990,

pp. 1180-1189.

Ibrahim, S. R., Stavrinidis, C., Fissette, E., and Brunner, O., "A Direct Two Re-

sponse Approach for Updating Analytical Dynamic Models of Structures with

Emphasis on Uniqueness," Proceedings, International Modal Analysis Confer-

ence, i989, pp. 340-346.

Luber, W. and Lotze, A., "Application of Sensitivity Methods for Error Local-

ization in Finite Element Systems," Proceedings, International Modal Analysis

Conference, 1990, pp. 598-604.

Lallement, G., "Indirect Identification Methods I: Adjustment of Methematical

Models by the Results of Vibrating Tests: Using Eigensolutions," Identification

of Vibrating Structures, 1982, pp. 179-194.

156



[24]

[25]

[26]

[27]

[28]

[29]

[3o]

[31]

[32]

[33]

[34]

[35]

Zhang, Q., Lallement, G., Fillod, R., and Piranda, J., "A Complete Procedure

for the Adjustment of a Mathematical Model from Identified Complex Modes,"

Proceedings, International Modal Analysis Conference, 1987, pp. 1183-1190.

Lallement, G. and Piranda, J., "Localization Methods for Parametric Updating

of Finite Element Models in Elastodynamics," Proceedings, International Modal

Analysis Conference, 1990, pp. 579-585.

Piranda, J., Lallement, G., and Cogan, S., "Parametric Correction of Finite Ele-

ment Models by Minimization of an Output Residual: Improvement of the Sen-

sitivity Method," Proceedings, International Modal Analysis Conference, 1991,

pp. 363-368.

Gordis, J. H., "An Exact Formulation for Structural Dynamic Model Error Local-

ization," Proceedings, International Modal Analysis Conference, 1993, pp. 159-
167.

He, J., "Sensitivity Analysis and Error Matrix Method Using Measured Fre-

quency Resonse Function (FRF) Data," Proceedings, International Modal Anal-

ysis Conference, 1993, pp. 1079-1082.

Fissette, E. Stavrinidis, C. and Ibrahim, S., "Error Location and Updating of

Analytical Dynamic Models Using a Force Balance Method," Proceedings, Inter-

national Modal Analysis Conference, 1989, pp. 1063-1070.

Gysin, H., "Comparison of Expansion Methods for FE Modeling Error Localiza-

tion," Proceedings, International Modal Analysis Conference, 1990, pp. 195-204.

Collins, J. D., Hart, G. C., Hasselman, T. K., and Kennedy, B., "Statistical

Identification of Structures," AIAA Journal, Vol. 12, No. 2, 1972, pp. 185-190.

Hasselman, T. K. and Chrostowski, J. D., "Evaluation of Predictive Accuracy

in Structural Dynamic Models," Proceedings, International Modal Analysis Con-

ference, 1989, pp. 360-366.

Hasselman, T. K., Chrostowski, J. D., and Ross, T. J., "Interval Prediction

in Structural Dynamic Analysis," Proceedings, AIAA Structures, Structural Dy-

namics, and Materials Conference, Dallas, TX, Apr. 1992, pp. 1272-1284.

Hasselman, T. K., Chrostowski, J. D., and Ross, T. J. C., "Propagation of

Modeling Uncertainty through Structural Dynamic Models," Proceedings, AIAA

Structures, Structural Dynamics, and Materials Conference, Hilton Head, SC,

Apr. 1994.

Crawley, E. F., Barlow, M. S., van Schoor, M. C., and Bicos, A. S., "Variation

in the Modal Parameters of Space Structures," Proceedings, AIAA Structures,

Structural Dynamics, and Materials Conference, Apr. 1992, pp. 1212-1228.

157



[36] Crawley, E. F., Barlow, M. S., van Schoor, M. C., Masters, B. P., and Bicos,

A. S., "Measurement of the Modal Parameters of a Space Structure in Zero

Gravity," AIAA Journal of Guidance, Control, and Dynamics, Vol. 18, No. 3,

May-June 1995, pp. 385-392.

[37] Miller, D. W., deLuis, J., Stover, G., How, J. P., Liu, K., Grocott, S. C. O.,

Campbell, M. E., Glaese, R., and Crawley, E. F., "The Middeck Active Control

Experiment (MACE): Using Space for Technology Research and Development,"

Proceedings, American Control Conference, Seattle, WA, June 1995, pp. 397-401.

[38] Crawley, E. F., Masters, B. P., and Hyde, T. T., "Conceptual Design Methodol-

ogy for High Performance Dynamic Structures," Proceedings, AIAA Structures,

Structural Dynamics, and Materials Conference, New Orleans, LA, Apr. 1995.

[39] Glaese, R. M. and Miller, D. W., "Derivation of 0-g Structural Control Models

from Analysis and 1-g Experimentation," Proceedings, AIAA Structures, Struc-

tural Dynamics, and Materials Conference, New Orleans, LA, Apr. 1995.

[4o] Liu, K. and Miller, D. W., "Time Domain State Space Identification of Structural

Systems," May 1993. Submitted to the ASME Journal of Dynamic Systems,

Measurement, and Control.

[41] How, J. P., Glaese, R. M., Grocott, S. C. O., and Miller, D. W., "Finite Element

Model Based Robust Controllers for the MIT Middeck Active Control Exper-

iment (MACE)," Proceedings, American Control Conference, Baltimore, MD,

June 1994, pp. 272-277.

[42] How, J. P. and Miller, D. W., "On-orbit Closed-loop Performance Predictions

for the Middeck Active Control Experiment (MACE)," Proceedings, 1994 IFAC

Symposium on Automatic Control in Aerospace, Palo Alto, CA, Sept. 1994,

pp. 228-233.

[43] Liu, K. and Glaese, R., "On-orbit Modeling and System Identification for

MACE," Proceedings, IFAC 13 th World Congress, San Francisco, CA, July 1996.

[44] Campbell, M. E., Grocott, S. C. O., and How, J. P., "Overview of Closed Loop

Results for MACE," Proceedings, IFAC 13 t_ World Congress, San Francisco, CA,

July 1996.

[45] Grocott, S. C. O. and Campbell, M. E., "Control Analysis Results for MACE:

Methods and Limitations," Proceedings, IFAC 13 th World Congress, San Fran-

cisco, CA, July 1996.

[46] Grocott, S. C. O., How, J. P., Miller, D. W., MacMartin, D. G., and Liu, K.,

"Robust Control Implementation on the Middeck Active Control Experiment

(MACE)," AIAA Journal of Guidance, Control, and Dynamics, Vol. 17, No. 6,

Nov.-Dec. 1994, pp. 1163-1170.

158



[47]

[48]

[49]

[5o]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Jacques, R. N. and Miller, D. W., "Multivariable Model Identification from Fre-

quency Response Data," Proceedings, IEEE Conference on Decision and Control,

San Antonio, TX, Dec 1993, pp. 3046-3051.

Campbell, M. E., Grocott, S. C. O., How, J. P., Miller, D. W., and Crawley,

E. F., "Verification Procedure for On-orbit Controllers for the Middeck Active

Control Experiment," Proceedings, 1995 American Control Conference, Seattle,

WA, June 1995, pp. 3600-3605.

Glaese, R., Development of O-gravity Structural Control Models from Ground

Analysis and Experimentation, Master's thesis, Department of Aeronautics and

Astronautics, M.I.T., Cambridge, MA, Jan. 1994.

Glaese, R. and Miller, D. W., "On-orbit Modelling of the Middeck Active Con-

trol Experiment from 1-g Analysis and Experimentation," Proceedings, the 12th

International Modal Analysis Conference (IMA C), Honolulu, Feb. 1994.

Anderson, E. H., Piezoceramic Actuation of One- and Two- Dimensional S, Mas-

ter's thesis, Department of Aeronautics and Astronautics, M.I.T., Cambridge,

MA, Mar. 1989. MIT SSL report # 5-89.

Tiffany, S. H. and Jr., W. M. A., "Aeroservoelastic modeling and applications

using minimum-state approximations of the unsteady aerodynamics," Proceed-

ings, AIAA Structures, Structural Dynamics, and Materials Conference, Mobile,

AL, Apr. 1989.

Lin, C. Y., "Open Loop and Preliminary Closed Loop Results of a Strain Ac-

tuated Active Aeroelastic Wing," Proceedings, AIAA Structures, Structural Dy-

namics, and Materials Conference, Apr. 1995.

Wada, B. K., "Extension of Ground-Based Testing for Large Space Structures,"

Proceedings, AIAA Structures, Structural Dynamics, and Materials Conference,

Apr. 1985, pp. 477-483.

Rey, D. A., Gravity and Laboratory Suspension Effects on Dynamics of Controlled

Flexible Spacecraft, Master's thesis, Massachusetts Institute of Technology, 1993.

MIT SERC report # 6-92.

Rey, D. A., Crawley, E. F., Alexander, H. L., Glaese, R. M., and Gaudenzi,

P., "Gravity and Suspension Effects on the Dynamics of Controlled Structures,"

Proceedings, AIAA Structures, Structural Dynamics, and Materials Conference,

(La Jolla, CA), Apr. 1993.

Gelb, A., Applied Optimal Estimation, MIT Press, Cambridge, MA, 1974.

Franklin, G. F., Powell, J. D., and Workman, M. L., Digital Control of Dynamic

Systems, Addison-Wesley, 1990.

159



[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[7o]

[71]

[72]

Ljung, L., "Asymptotic Behavior of the Extended Kalman Filter as a Parameter

Estimator for Linear Systems," IEEE Trans. on Automatic Control, Vol. AC-24,

No. 1, Feb. 1979, pp. 36-50.

Ljung, L., "Analysis of Linear, Recursive, Stochastic Algorithms," IEEE Trans.

on Automatic Control, Vol. AC-22, No. 1, Aug. 1977, pp. 551-575.

Mutambara, A. G., Decentralized Estimation and Control with Applications to a

Modular Robot, Ph.D. thesis, University of Oxford, 1995.

Mutambara, A. G. and Durrant-Whyte, H. F., "Estimation and Information

Space," Proceedings, IFAC 13 th World Congress, San Francisco, CA, July 1996.

Eldred, M. S., Lerner, P. B., and Anderson, W. J., "Higher Order Eigenpair

Perturbations," AIAA Journal, Vol. 30, No: 7, July 1992, pp. 1870-1875.

Graham, A., Kronecker Products and Matrix Calculus: with Applications, Ellis

Horwood Limited, 1981.

Bathe, K.-J., Finite Element Procedures in Engineering Analysis, Prentice-Hall,

Inc, Englewood Cliffs, N J, 1982.

MacNeal-Schwendler Corporation, NASTRAN Users Manual Version 67. Los

Angeles, 1993.

Doyle, J. C., Glover, K., Khargonekar, P. P., and Francis, B. A., "State-Space So-

lutions to Standard 7-/2 and 7-/00 Control Problems," IEEE Trans. on Automatic

Control, Vol. AC-34, No. 8, Aug. 1989, pp. 831-847.

Haddad, W. M. and Bernstein, D. S., "Generalized Riccati Equations for the

Full- and Reduced-order Mixed-norm _2/7-/oo Standard Problem," Systems and

Control Letters, Vol. 14, 1990, pp. 185-197.

Doyle, J. C., "Structured Uncertainty in Control System Design," Proceedings,

IEEE Conference on Decision and Control, Ft. Lauderdale, FL, 1985.

Fan, M. K. H., Tits, A. L., and Doyle, J. C., "Robustness in the Presence of Mixed

Parametric Uncertainty and Unmodeled Dynamics," IEEE TranS: on Automatic

Control, Vol. AC-36, No. 1, Jan. 1991, pp. 25-38.

Young, P. M., Newlin, M. P., and Doyle, J. C., "# Analysis with Real Parametric

Uncertainty," Proceedings, IEEE Conference on Decision and Control, Brighton,

England, Dec. 1992, pp. 1251-1256.

How, J. P. and Hall, S. R., "Connections between the Popov Stability Criterion

and Bounds for Real Parameter Uncertainty," Proceedings, American Control

Conference, San Francisco, June 1993, pp. 1084-1089.

160



[73]

[74]

[75]

[76]

[77]

[78]

[79]

[8o]

[81]

[82]

[83]

[84]

How, J. P., Robust Control Design with Real Parameter Uncertainty use Absolute

Stability Theory, Ph.D. thesis, Department of Aeronautics and Astronautics,

M.I.T., Cambridge, MA, Jan. 1993.

How, J. P., Hall, S. R., and Haddad, W. M., "Robust Controllers for the Middeck

Active Control Experiment using Popov Controller Synthesis," IEEE Transac-

tions on Control Systems Technology, Vol. 2, No. 2, June 1994, pp. 73-87.

How, J. P., Collins, Jr., E. G., and Haddad, W. M., "Optimal Popov Analysis

and Synthesis for Systems with Real Parameter Uncertainties," Dec 1995.

Ashkenazi, A. and Bryson Jr., A. E., "Control Logic for Parameter Insensitivity

and Disturbance Attenuation," AIAA Journal of Guidance, Control, and Dy-

namics, Vol. 5, No. 4, July 1982, pp. 383-388.

MacMartin, D. G., Hall, S. R., and Bernstein, D. S., "Fixed Order Multi-Model

Estimation and Control," Proceedings, American Control Conference, Boston,

MA, June 1991, pp. 2113-2118.

Hyland, D. C., "Maximum Entropy Stochastic Approach to Controller Design

for Uncertain Structural Systems," Proceedings, American Control Conference,

Arlington, VA, June 1982, pp. 680:688.

Bernstein, D. S. and Hyland, D. C., "Maximum Entropy-type Lyapunov Func-

tions for Robust Stability and Performance Analysis," Proceedings, American

Control Conference, June 1992.

Blelloch, P. A. and Mingori, D. L., "Robust Linear Quadratic Gaussian Control

for Flexible Structures," AIAA Journal of Guidance, Control, and Dynamics,

Vol. 13, No. 1, Jan. 1990, pp. 66-72.

Sesak, J. R. and Likins, D. D., "Model Error Sensitivity Suppression: Qua-

sistatic Optimal Control of Flexible Structures," Proceedings, IEEE Conference

on Decision and Control, Ft. Lauderdale, FL, Dec. 1988.

Wie, B. and Byun, K.-W., "New Generalized Structural Filtering Concept for

Active Vibration Control Synthesis," AIAA Journal of Guidance, Control, and

Dynamics, Vol. 12, No. 2, Mar.-Apr. 1989, pp. 147-154.

Wie, B. and Gonzalez, M., "Control Synthesis for Flexible Space Structures

Excited by Persistent Disturbances," AIAA Journal of Guidance, Control, and

Dynamics, Vol. 15, No. 1, Jan.-Feb. 1992, pp. 73-80.

Campbell, M. E., Neo-Classical Control of Structures, Master's thesis, Depart-

ment of Aeronautics and Astronautics, M.I.T., Cambridge, MA, Feb. 1993. MIT

SERC report # 4-92.

161



[85]

[86]

[87]

[88]

[89]

[9o]

[91]

[92]

[93]

[94]

Campbell, M. E. and Crawley, E. F., "Classically Rationalized Low Order Robust

Structural Controllers," Proceedings, 35 th Structures, Structural Dynamics and

Materials Conference, Hilton Head, SC, Apr. 1994.

D'Azzo, J. J. and Houpis, C. H., Linear Control System Analysis and Design:

Conventional and Modern, McGraw-Hill Inc., New York, 1988.

Kharitonov, V. L., "Asymptotic Stability of an Equilibrium Position of a Family

of Systems of Linear Differential Equations," Differencial'nye Uravenija, Vol. 14,

No. 11, 1978, pp. 2086-2088.

Grocott, S. C. O., How, J. P., and Miller, D. W., "Comparison of Control

Techniques for Robust Performance on Uncertain Structural Systems," Proceed-

ings, AIAA Guidance, Navigation, and Control Conference, Scottsdale, AZ, Aug.

1994, pp. 261-271.

Morton, B. G. and McAfoos, R. M., "A Mu-Test for Robustness Analysis of Real

Parameter Variation Problem," Proceedings, American Control Conference, May

1985, pp. 135-138.

Grocott, S., Comparison of Control Techniques for Robust Performance on Un-

certain Structural Systems, Master's thesis, Massachusetts Institute of Technol-

ogy, 1994.

Kwakernaak, H. and Sivan, R., Linear Optimal Control Systems, Wiley-

Interscience, 1972.

Sesak, J. R., Sensitivity Constrained Linear Optimal Control Analysis and Syn-

thesis, Ph.D. thesis, University of Wisconsin, 1974.

Grocott, S. C. O., 1995. Personal Communication.

Tahk, M. and Speyer, J. L., "Modeling of Parameter Variations and Asymptotic

LQG Synthesis," IEEE Trans. on Automatic Control, Vol. AC-32, No. 9, Sept.

1987, pp. 793-801.

162


